android_bionic/libc/bionic/atexit.cpp

284 lines
9.0 KiB
C++

/*
* Copyright (C) 2020 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "atexit.h"
#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <async_safe/CHECK.h>
#include <async_safe/log.h>
#include "platform/bionic/page.h"
extern "C" void __libc_stdio_cleanup();
extern "C" void __unregister_atfork(void* dso);
namespace {
struct AtexitEntry {
void (*fn)(void*); // the __cxa_atexit callback
void* arg; // argument for `fn` callback
void* dso; // shared module handle
};
class AtexitArray {
public:
size_t size() const { return size_; }
uint64_t total_appends() const { return total_appends_; }
const AtexitEntry& operator[](size_t idx) const { return array_[idx]; }
bool append_entry(const AtexitEntry& entry);
AtexitEntry extract_entry(size_t idx);
void recompact();
private:
AtexitEntry* array_;
size_t size_;
size_t extracted_count_;
size_t capacity_;
// An entry can be appended by a __cxa_finalize callback. Track the number of appends so we
// restart concurrent __cxa_finalize passes.
uint64_t total_appends_;
static size_t page_start_of_index(size_t idx) { return PAGE_START(idx * sizeof(AtexitEntry)); }
static size_t page_end_of_index(size_t idx) { return PAGE_END(idx * sizeof(AtexitEntry)); }
// Recompact the array if it will save at least one page of memory at the end.
bool needs_recompaction() const {
return page_end_of_index(size_ - extracted_count_) < page_end_of_index(size_);
}
void set_writable(bool writable, size_t start_idx, size_t num_entries);
static bool next_capacity(size_t capacity, size_t* result);
bool expand_capacity();
};
} // anonymous namespace
bool AtexitArray::append_entry(const AtexitEntry& entry) {
if (size_ >= capacity_ && !expand_capacity()) return false;
size_t idx = size_++;
set_writable(true, idx, 1);
array_[idx] = entry;
++total_appends_;
set_writable(false, idx, 1);
return true;
}
// Extract an entry and return it.
AtexitEntry AtexitArray::extract_entry(size_t idx) {
AtexitEntry result = array_[idx];
set_writable(true, idx, 1);
array_[idx] = {};
++extracted_count_;
set_writable(false, idx, 1);
return result;
}
void AtexitArray::recompact() {
if (!needs_recompaction()) return;
set_writable(true, 0, size_);
// Optimization: quickly skip over the initial non-null entries.
size_t src = 0, dst = 0;
while (src < size_ && array_[src].fn != nullptr) {
++src;
++dst;
}
// Shift the non-null entries forward, and zero out the removed entries at the end of the array.
for (; src < size_; ++src) {
const AtexitEntry entry = array_[src];
array_[src] = {};
if (entry.fn != nullptr) {
array_[dst++] = entry;
}
}
// If the table uses fewer pages, clean the pages at the end.
size_t old_bytes = page_end_of_index(size_);
size_t new_bytes = page_end_of_index(dst);
if (new_bytes < old_bytes) {
madvise(reinterpret_cast<char*>(array_) + new_bytes, old_bytes - new_bytes, MADV_DONTNEED);
}
set_writable(false, 0, size_);
size_ = dst;
extracted_count_ = 0;
}
// Use mprotect to make the array writable or read-only. Returns true on success. Making the array
// read-only could protect against either unintentional or malicious corruption of the array.
void AtexitArray::set_writable(bool writable, size_t start_idx, size_t num_entries) {
if (array_ == nullptr) return;
const size_t start_byte = page_start_of_index(start_idx);
const size_t stop_byte = page_end_of_index(start_idx + num_entries);
const size_t byte_len = stop_byte - start_byte;
const int prot = PROT_READ | (writable ? PROT_WRITE : 0);
if (mprotect(reinterpret_cast<char*>(array_) + start_byte, byte_len, prot) != 0) {
async_safe_fatal("mprotect failed on atexit array: %s", strerror(errno));
}
}
// Approximately double the capacity. Returns true if successful (no overflow). AtexitEntry is
// smaller than a page, but this function should still be correct even if AtexitEntry were larger
// than one.
bool AtexitArray::next_capacity(size_t capacity, size_t* result) {
if (capacity == 0) {
*result = PAGE_END(sizeof(AtexitEntry)) / sizeof(AtexitEntry);
return true;
}
size_t num_bytes;
if (__builtin_mul_overflow(page_end_of_index(capacity), 2, &num_bytes)) {
async_safe_format_log(ANDROID_LOG_WARN, "libc", "__cxa_atexit: capacity calculation overflow");
return false;
}
*result = num_bytes / sizeof(AtexitEntry);
return true;
}
bool AtexitArray::expand_capacity() {
size_t new_capacity;
if (!next_capacity(capacity_, &new_capacity)) return false;
const size_t new_capacity_bytes = page_end_of_index(new_capacity);
set_writable(true, 0, capacity_);
bool result = false;
void* new_pages;
if (array_ == nullptr) {
new_pages = mmap(nullptr, new_capacity_bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
} else {
// mremap fails if the source buffer crosses a boundary between two VMAs. When a single array
// element is modified, the kernel should split then rejoin the buffer's VMA.
new_pages = mremap(array_, page_end_of_index(capacity_), new_capacity_bytes, MREMAP_MAYMOVE);
}
if (new_pages == MAP_FAILED) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"__cxa_atexit: mmap/mremap failed to allocate %zu bytes: %s",
new_capacity_bytes, strerror(errno));
} else {
result = true;
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, new_pages, new_capacity_bytes, "atexit handlers");
array_ = static_cast<AtexitEntry*>(new_pages);
capacity_ = new_capacity;
}
set_writable(false, 0, capacity_);
return result;
}
static AtexitArray g_array;
static pthread_mutex_t g_atexit_lock = PTHREAD_MUTEX_INITIALIZER;
static inline void atexit_lock() {
pthread_mutex_lock(&g_atexit_lock);
}
static inline void atexit_unlock() {
pthread_mutex_unlock(&g_atexit_lock);
}
// Register a function to be called either when a library is unloaded (dso != nullptr), or when the
// program exits (dso == nullptr). The `dso` argument is typically the address of a hidden
// __dso_handle variable. This function is also used as the backend for the atexit function.
//
// See https://itanium-cxx-abi.github.io/cxx-abi/abi.html#dso-dtor.
//
int __cxa_atexit(void (*func)(void*), void* arg, void* dso) {
int result = -1;
if (func != nullptr) {
atexit_lock();
if (g_array.append_entry({.fn = func, .arg = arg, .dso = dso})) {
result = 0;
}
atexit_unlock();
}
return result;
}
void __cxa_finalize(void* dso) {
atexit_lock();
static uint32_t call_depth = 0;
++call_depth;
restart:
const uint64_t total_appends = g_array.total_appends();
for (ssize_t i = g_array.size() - 1; i >= 0; --i) {
if (g_array[i].fn == nullptr || (dso != nullptr && g_array[i].dso != dso)) continue;
// Clear the entry in the array because its DSO handle will become invalid, and to avoid calling
// an entry again if __cxa_finalize is called recursively.
const AtexitEntry entry = g_array.extract_entry(i);
atexit_unlock();
entry.fn(entry.arg);
atexit_lock();
if (g_array.total_appends() != total_appends) goto restart;
}
// Avoid recompaction on recursive calls because it's unnecessary and would require earlier,
// concurrent __cxa_finalize calls to restart. Skip recompaction on program exit too
// (dso == nullptr), because the memory will be reclaimed soon anyway.
--call_depth;
if (call_depth == 0 && dso != nullptr) {
g_array.recompact();
}
atexit_unlock();
if (dso != nullptr) {
__unregister_atfork(dso);
} else {
// If called via exit(), flush output of all open files.
__libc_stdio_cleanup();
}
}