479 lines
19 KiB
C++
479 lines
19 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <sys/auxv.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/random.h>
|
|
#include <unistd.h>
|
|
|
|
#include "pthread_internal.h"
|
|
|
|
#include <async_safe/log.h>
|
|
|
|
#include "platform/bionic/macros.h"
|
|
#include "platform/bionic/mte.h"
|
|
#include "private/ErrnoRestorer.h"
|
|
#include "private/ScopedRWLock.h"
|
|
#include "private/bionic_constants.h"
|
|
#include "private/bionic_defs.h"
|
|
#include "private/bionic_globals.h"
|
|
#include "private/bionic_ssp.h"
|
|
#include "private/bionic_systrace.h"
|
|
#include "private/bionic_tls.h"
|
|
|
|
// x86 uses segment descriptors rather than a direct pointer to TLS.
|
|
#if defined(__i386__)
|
|
#include <asm/ldt.h>
|
|
void __init_user_desc(struct user_desc*, bool, void*);
|
|
#endif
|
|
|
|
__attribute__((no_stack_protector))
|
|
void __init_tcb_stack_guard(bionic_tcb* tcb) {
|
|
// GCC looks in the TLS for the stack guard on x86, so copy it there from our global.
|
|
tcb->tls_slot(TLS_SLOT_STACK_GUARD) = reinterpret_cast<void*>(__stack_chk_guard);
|
|
}
|
|
|
|
void __init_bionic_tls_ptrs(bionic_tcb* tcb, bionic_tls* tls) {
|
|
tcb->thread()->bionic_tls = tls;
|
|
tcb->tls_slot(TLS_SLOT_BIONIC_TLS) = tls;
|
|
}
|
|
|
|
// Allocate a temporary bionic_tls that the dynamic linker's main thread can
|
|
// use while it's loading the initial set of ELF modules.
|
|
bionic_tls* __allocate_temp_bionic_tls() {
|
|
size_t allocation_size = __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE);
|
|
void* allocation = mmap(nullptr, allocation_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
if (allocation == MAP_FAILED) {
|
|
// Avoid strerror because it might need bionic_tls.
|
|
async_safe_fatal("failed to allocate bionic_tls: error %d", errno);
|
|
}
|
|
return static_cast<bionic_tls*>(allocation);
|
|
}
|
|
|
|
void __free_temp_bionic_tls(bionic_tls* tls) {
|
|
munmap(tls, __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE));
|
|
}
|
|
|
|
static void __init_alternate_signal_stack(pthread_internal_t* thread) {
|
|
// Create and set an alternate signal stack.
|
|
int prot = PROT_READ | PROT_WRITE;
|
|
#ifdef __aarch64__
|
|
if (atomic_load(&__libc_globals->memtag_stack)) {
|
|
prot |= PROT_MTE;
|
|
}
|
|
#endif
|
|
void* stack_base = mmap(nullptr, SIGNAL_STACK_SIZE, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (stack_base != MAP_FAILED) {
|
|
// Create a guard to catch stack overflows in signal handlers.
|
|
if (mprotect(stack_base, PTHREAD_GUARD_SIZE, PROT_NONE) == -1) {
|
|
munmap(stack_base, SIGNAL_STACK_SIZE);
|
|
return;
|
|
}
|
|
stack_t ss;
|
|
ss.ss_sp = reinterpret_cast<uint8_t*>(stack_base) + PTHREAD_GUARD_SIZE;
|
|
ss.ss_size = SIGNAL_STACK_SIZE - PTHREAD_GUARD_SIZE;
|
|
ss.ss_flags = 0;
|
|
sigaltstack(&ss, nullptr);
|
|
thread->alternate_signal_stack = stack_base;
|
|
|
|
// We can only use const static allocated string for mapped region name, as Android kernel
|
|
// uses the string pointer directly when dumping /proc/pid/maps.
|
|
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack");
|
|
}
|
|
}
|
|
|
|
static void __init_shadow_call_stack(pthread_internal_t* thread __unused) {
|
|
#ifdef __aarch64__
|
|
// Allocate the stack and the guard region.
|
|
char* scs_guard_region = reinterpret_cast<char*>(
|
|
mmap(nullptr, SCS_GUARD_REGION_SIZE, 0, MAP_PRIVATE | MAP_ANON, -1, 0));
|
|
thread->shadow_call_stack_guard_region = scs_guard_region;
|
|
|
|
// The address is aligned to SCS_SIZE so that we only need to store the lower log2(SCS_SIZE) bits
|
|
// in jmp_buf.
|
|
char* scs_aligned_guard_region =
|
|
reinterpret_cast<char*>(align_up(reinterpret_cast<uintptr_t>(scs_guard_region), SCS_SIZE));
|
|
|
|
// We need to ensure that [scs_offset,scs_offset+SCS_SIZE) is in the guard region and that there
|
|
// is at least one unmapped page after the shadow call stack (to catch stack overflows). We can't
|
|
// use arc4random_uniform in init because /dev/urandom might not have been created yet.
|
|
size_t scs_offset =
|
|
(getpid() == 1) ? 0 : (arc4random_uniform(SCS_GUARD_REGION_SIZE / SCS_SIZE - 1) * SCS_SIZE);
|
|
|
|
// Make the stack readable and writable and store its address in register x18. This is
|
|
// deliberately the only place where the address is stored.
|
|
char *scs = scs_aligned_guard_region + scs_offset;
|
|
mprotect(scs, SCS_SIZE, PROT_READ | PROT_WRITE);
|
|
__asm__ __volatile__("mov x18, %0" ::"r"(scs));
|
|
#endif
|
|
}
|
|
|
|
void __init_additional_stacks(pthread_internal_t* thread) {
|
|
__init_alternate_signal_stack(thread);
|
|
__init_shadow_call_stack(thread);
|
|
}
|
|
|
|
int __init_thread(pthread_internal_t* thread) {
|
|
thread->cleanup_stack = nullptr;
|
|
|
|
if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) {
|
|
atomic_init(&thread->join_state, THREAD_NOT_JOINED);
|
|
} else {
|
|
atomic_init(&thread->join_state, THREAD_DETACHED);
|
|
}
|
|
|
|
// Set the scheduling policy/priority of the thread if necessary.
|
|
bool need_set = true;
|
|
int policy;
|
|
sched_param param;
|
|
if ((thread->attr.flags & PTHREAD_ATTR_FLAG_INHERIT) != 0) {
|
|
// Unless the parent has SCHED_RESET_ON_FORK set, we've already inherited from the parent.
|
|
policy = sched_getscheduler(0);
|
|
need_set = ((policy & SCHED_RESET_ON_FORK) != 0);
|
|
if (need_set) {
|
|
if (policy == -1) {
|
|
async_safe_format_log(ANDROID_LOG_WARN, "libc",
|
|
"pthread_create sched_getscheduler failed: %s", strerror(errno));
|
|
return errno;
|
|
}
|
|
if (sched_getparam(0, ¶m) == -1) {
|
|
async_safe_format_log(ANDROID_LOG_WARN, "libc",
|
|
"pthread_create sched_getparam failed: %s", strerror(errno));
|
|
return errno;
|
|
}
|
|
}
|
|
} else {
|
|
policy = thread->attr.sched_policy;
|
|
param.sched_priority = thread->attr.sched_priority;
|
|
}
|
|
// Backwards compatibility: before P, Android didn't have pthread_attr_setinheritsched,
|
|
// and our behavior was neither of the POSIX behaviors.
|
|
if ((thread->attr.flags & (PTHREAD_ATTR_FLAG_INHERIT|PTHREAD_ATTR_FLAG_EXPLICIT)) == 0) {
|
|
need_set = (thread->attr.sched_policy != SCHED_NORMAL);
|
|
}
|
|
if (need_set) {
|
|
if (sched_setscheduler(thread->tid, policy, ¶m) == -1) {
|
|
async_safe_format_log(ANDROID_LOG_WARN, "libc",
|
|
"pthread_create sched_setscheduler(%d, {%d}) call failed: %s", policy,
|
|
param.sched_priority, strerror(errno));
|
|
#if defined(__LP64__)
|
|
// For backwards compatibility reasons, we only report failures on 64-bit devices.
|
|
return errno;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Allocate a thread's primary mapping. This mapping includes static TLS and
|
|
// optionally a stack. Static TLS includes ELF TLS segments and the bionic_tls
|
|
// struct.
|
|
//
|
|
// The stack_guard_size must be a multiple of the PAGE_SIZE.
|
|
ThreadMapping __allocate_thread_mapping(size_t stack_size, size_t stack_guard_size) {
|
|
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
|
|
|
|
// Allocate in order: stack guard, stack, static TLS, guard page.
|
|
size_t mmap_size;
|
|
if (__builtin_add_overflow(stack_size, stack_guard_size, &mmap_size)) return {};
|
|
if (__builtin_add_overflow(mmap_size, layout.size(), &mmap_size)) return {};
|
|
if (__builtin_add_overflow(mmap_size, PTHREAD_GUARD_SIZE, &mmap_size)) return {};
|
|
|
|
// Align the result to a page size.
|
|
const size_t unaligned_size = mmap_size;
|
|
mmap_size = __BIONIC_ALIGN(mmap_size, PAGE_SIZE);
|
|
if (mmap_size < unaligned_size) return {};
|
|
|
|
// Create a new private anonymous map. Make the entire mapping PROT_NONE, then carve out a
|
|
// read+write area in the middle.
|
|
const int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
|
|
char* const space = static_cast<char*>(mmap(nullptr, mmap_size, PROT_NONE, flags, -1, 0));
|
|
if (space == MAP_FAILED) {
|
|
async_safe_format_log(ANDROID_LOG_WARN,
|
|
"libc",
|
|
"pthread_create failed: couldn't allocate %zu-bytes mapped space: %s",
|
|
mmap_size, strerror(errno));
|
|
return {};
|
|
}
|
|
const size_t writable_size = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE;
|
|
int prot = PROT_READ | PROT_WRITE;
|
|
const char* prot_str = "R+W";
|
|
#ifdef __aarch64__
|
|
if (atomic_load(&__libc_globals->memtag_stack)) {
|
|
prot |= PROT_MTE;
|
|
prot_str = "R+W+MTE";
|
|
}
|
|
#endif
|
|
if (mprotect(space + stack_guard_size, writable_size, prot) != 0) {
|
|
async_safe_format_log(
|
|
ANDROID_LOG_WARN, "libc",
|
|
"pthread_create failed: couldn't mprotect %s %zu-byte thread mapping region: %s", prot_str,
|
|
writable_size, strerror(errno));
|
|
munmap(space, mmap_size);
|
|
return {};
|
|
}
|
|
|
|
ThreadMapping result = {};
|
|
result.mmap_base = space;
|
|
result.mmap_size = mmap_size;
|
|
result.mmap_base_unguarded = space + stack_guard_size;
|
|
result.mmap_size_unguarded = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE;
|
|
result.static_tls = space + mmap_size - PTHREAD_GUARD_SIZE - layout.size();
|
|
result.stack_base = space;
|
|
result.stack_top = result.static_tls;
|
|
return result;
|
|
}
|
|
|
|
static int __allocate_thread(pthread_attr_t* attr, bionic_tcb** tcbp, void** child_stack) {
|
|
ThreadMapping mapping;
|
|
char* stack_top;
|
|
bool stack_clean = false;
|
|
|
|
if (attr->stack_base == nullptr) {
|
|
// The caller didn't provide a stack, so allocate one.
|
|
|
|
// Make sure the guard size is a multiple of PAGE_SIZE.
|
|
const size_t unaligned_guard_size = attr->guard_size;
|
|
attr->guard_size = __BIONIC_ALIGN(attr->guard_size, PAGE_SIZE);
|
|
if (attr->guard_size < unaligned_guard_size) return EAGAIN;
|
|
|
|
mapping = __allocate_thread_mapping(attr->stack_size, attr->guard_size);
|
|
if (mapping.mmap_base == nullptr) return EAGAIN;
|
|
|
|
stack_top = mapping.stack_top;
|
|
attr->stack_base = mapping.stack_base;
|
|
stack_clean = true;
|
|
} else {
|
|
mapping = __allocate_thread_mapping(0, PTHREAD_GUARD_SIZE);
|
|
if (mapping.mmap_base == nullptr) return EAGAIN;
|
|
|
|
stack_top = static_cast<char*>(attr->stack_base) + attr->stack_size;
|
|
}
|
|
|
|
// Carve out space from the stack for the thread's pthread_internal_t. This
|
|
// memory isn't counted in pthread_attr_getstacksize.
|
|
|
|
// To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary.
|
|
stack_top = align_down(stack_top - sizeof(pthread_internal_t), 16);
|
|
|
|
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(stack_top);
|
|
if (!stack_clean) {
|
|
// If thread was not allocated by mmap(), it may not have been cleared to zero.
|
|
// So assume the worst and zero it.
|
|
memset(thread, 0, sizeof(pthread_internal_t));
|
|
}
|
|
|
|
// Locate static TLS structures within the mapped region.
|
|
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
|
|
auto tcb = reinterpret_cast<bionic_tcb*>(mapping.static_tls + layout.offset_bionic_tcb());
|
|
auto tls = reinterpret_cast<bionic_tls*>(mapping.static_tls + layout.offset_bionic_tls());
|
|
|
|
// Initialize TLS memory.
|
|
__init_static_tls(mapping.static_tls);
|
|
__init_tcb(tcb, thread);
|
|
__init_tcb_dtv(tcb);
|
|
__init_tcb_stack_guard(tcb);
|
|
__init_bionic_tls_ptrs(tcb, tls);
|
|
|
|
attr->stack_size = stack_top - static_cast<char*>(attr->stack_base);
|
|
thread->attr = *attr;
|
|
thread->mmap_base = mapping.mmap_base;
|
|
thread->mmap_size = mapping.mmap_size;
|
|
thread->mmap_base_unguarded = mapping.mmap_base_unguarded;
|
|
thread->mmap_size_unguarded = mapping.mmap_size_unguarded;
|
|
thread->stack_top = reinterpret_cast<uintptr_t>(stack_top);
|
|
|
|
*tcbp = tcb;
|
|
*child_stack = stack_top;
|
|
return 0;
|
|
}
|
|
|
|
void __set_stack_and_tls_vma_name(bool is_main_thread) {
|
|
// Name the thread's stack-and-tls area to help with debugging. This mapped area also includes
|
|
// static TLS data, which is typically a few pages (e.g. bionic_tls).
|
|
pthread_internal_t* thread = __get_thread();
|
|
const char* name;
|
|
if (is_main_thread) {
|
|
name = "stack_and_tls:main";
|
|
} else {
|
|
// The kernel doesn't copy the name string, but this variable will last at least as long as the
|
|
// mapped area. The mapped area's VMAs are unmapped with a single call to munmap.
|
|
auto& name_buffer = thread->vma_name_buffer;
|
|
static_assert(arraysize(name_buffer) >= arraysize("stack_and_tls:") + 11 + 1);
|
|
async_safe_format_buffer(name_buffer, arraysize(name_buffer), "stack_and_tls:%d", thread->tid);
|
|
name = name_buffer;
|
|
}
|
|
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, thread->mmap_base_unguarded, thread->mmap_size_unguarded,
|
|
name);
|
|
}
|
|
|
|
extern "C" int __rt_sigprocmask(int, const sigset64_t*, sigset64_t*, size_t);
|
|
|
|
__attribute__((no_sanitize("hwaddress")))
|
|
#ifdef __aarch64__
|
|
// This function doesn't return, but it does appear in stack traces. Avoid using return PAC in this
|
|
// function because we may end up resetting IA, which may confuse unwinders due to mismatching keys.
|
|
__attribute__((target("branch-protection=bti")))
|
|
#endif
|
|
static int __pthread_start(void* arg) {
|
|
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(arg);
|
|
|
|
__hwasan_thread_enter();
|
|
|
|
// Wait for our creating thread to release us. This lets it have time to
|
|
// notify gdb about this thread before we start doing anything.
|
|
// This also provides the memory barrier needed to ensure that all memory
|
|
// accesses previously made by the creating thread are visible to us.
|
|
thread->startup_handshake_lock.lock();
|
|
|
|
__set_stack_and_tls_vma_name(false);
|
|
__init_additional_stacks(thread);
|
|
__rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask));
|
|
#ifdef __aarch64__
|
|
// Chrome's sandbox prevents this prctl, so only reset IA if the target SDK level is high enough.
|
|
// Furthermore, processes loaded from vendor partitions may have their own sandboxes that would
|
|
// reject the prctl. Because no devices launched with PAC enabled before S, we can avoid issues on
|
|
// upgrading devices by checking for PAC support before issuing the prctl.
|
|
static const bool pac_supported = getauxval(AT_HWCAP) & HWCAP_PACA;
|
|
if (pac_supported && android_get_application_target_sdk_version() >= __ANDROID_API_S__) {
|
|
prctl(PR_PAC_RESET_KEYS, PR_PAC_APIAKEY, 0, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
void* result = thread->start_routine(thread->start_routine_arg);
|
|
pthread_exit(result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// A no-op start routine for pthread_create failures where we've created a thread but aren't
|
|
// going to run user code on it. We swap out the user's start routine for this and take advantage
|
|
// of the regular thread teardown to free up resources.
|
|
static void* __do_nothing(void*) {
|
|
return nullptr;
|
|
}
|
|
|
|
pthread_rwlock_t g_thread_creation_lock = PTHREAD_RWLOCK_INITIALIZER;
|
|
|
|
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
|
|
int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr,
|
|
void* (*start_routine)(void*), void* arg) {
|
|
ErrnoRestorer errno_restorer;
|
|
|
|
pthread_attr_t thread_attr;
|
|
ScopedTrace trace("pthread_create");
|
|
if (attr == nullptr) {
|
|
pthread_attr_init(&thread_attr);
|
|
} else {
|
|
thread_attr = *attr;
|
|
attr = nullptr; // Prevent misuse below.
|
|
}
|
|
|
|
bionic_tcb* tcb = nullptr;
|
|
void* child_stack = nullptr;
|
|
int result = __allocate_thread(&thread_attr, &tcb, &child_stack);
|
|
if (result != 0) {
|
|
return result;
|
|
}
|
|
|
|
pthread_internal_t* thread = tcb->thread();
|
|
|
|
// Create a lock for the thread to wait on once it starts so we can keep
|
|
// it from doing anything until after we notify the debugger about it
|
|
//
|
|
// This also provides the memory barrier we need to ensure that all
|
|
// memory accesses previously performed by this thread are visible to
|
|
// the new thread.
|
|
thread->startup_handshake_lock.init(false);
|
|
thread->startup_handshake_lock.lock();
|
|
|
|
thread->start_routine = start_routine;
|
|
thread->start_routine_arg = arg;
|
|
|
|
thread->set_cached_pid(getpid());
|
|
|
|
int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM |
|
|
CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
|
|
void* tls = &tcb->tls_slot(0);
|
|
#if defined(__i386__)
|
|
// On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than
|
|
// a pointer to the TLS itself.
|
|
user_desc tls_descriptor;
|
|
__init_user_desc(&tls_descriptor, false, tls);
|
|
tls = &tls_descriptor;
|
|
#endif
|
|
|
|
ScopedReadLock locker(&g_thread_creation_lock);
|
|
|
|
sigset64_t block_all_mask;
|
|
sigfillset64(&block_all_mask);
|
|
__rt_sigprocmask(SIG_SETMASK, &block_all_mask, &thread->start_mask, sizeof(thread->start_mask));
|
|
int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid));
|
|
__rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask));
|
|
if (rc == -1) {
|
|
int clone_errno = errno;
|
|
// We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to
|
|
// be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a
|
|
// reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker.
|
|
thread->startup_handshake_lock.unlock();
|
|
if (thread->mmap_size != 0) {
|
|
munmap(thread->mmap_base, thread->mmap_size);
|
|
}
|
|
async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s",
|
|
strerror(clone_errno));
|
|
return clone_errno;
|
|
}
|
|
|
|
int init_errno = __init_thread(thread);
|
|
if (init_errno != 0) {
|
|
// Mark the thread detached and replace its start_routine with a no-op.
|
|
// Letting the thread run is the easiest way to clean up its resources.
|
|
atomic_store(&thread->join_state, THREAD_DETACHED);
|
|
__pthread_internal_add(thread);
|
|
thread->start_routine = __do_nothing;
|
|
thread->startup_handshake_lock.unlock();
|
|
return init_errno;
|
|
}
|
|
|
|
// Publish the pthread_t and unlock the mutex to let the new thread start running.
|
|
*thread_out = __pthread_internal_add(thread);
|
|
thread->startup_handshake_lock.unlock();
|
|
|
|
return 0;
|
|
}
|