android_bionic/tests/gtest_main.cpp

987 lines
34 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "BionicDeathTest.h" // For selftest.
namespace testing {
namespace internal {
// Reuse of testing::internal::ColoredPrintf in gtest.
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
void ColoredPrintf(GTestColor color, const char* fmt, ...);
} // namespace internal
} // namespace testing
using testing::internal::GTestColor;
using testing::internal::COLOR_DEFAULT;
using testing::internal::COLOR_RED;
using testing::internal::COLOR_GREEN;
using testing::internal::COLOR_YELLOW;
using testing::internal::ColoredPrintf;
constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS = 60000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS = 2000;
// The time each test can run before killed for the reason of timeout.
// It takes effect only with --isolate option.
static int global_test_run_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
// The time each test can run before be warned for too much running time.
// It takes effect only with --isolate option.
static int global_test_run_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;
// Return deadline duration for a test, in ms.
static int GetDeadlineInfo(const std::string& /*test_name*/) {
return global_test_run_deadline_ms;
}
// Return warnline duration for a test, in ms.
static int GetWarnlineInfo(const std::string& /*test_name*/) {
return global_test_run_warnline_ms;
}
static void PrintHelpInfo() {
printf("Bionic Unit Test Options:\n"
" -j [JOB_COUNT] or -j[JOB_COUNT]\n"
" Run up to JOB_COUNT tests in parallel.\n"
" Use isolation mode, Run each test in a separate process.\n"
" If JOB_COUNT is not given, it is set to the count of available processors.\n"
" --no-isolate\n"
" Don't use isolation mode, run all tests in a single process.\n"
" --deadline=[TIME_IN_MS]\n"
" Run each test in no longer than [TIME_IN_MS] time.\n"
" It takes effect only in isolation mode. Deafult deadline is 60000 ms.\n"
" --warnline=[TIME_IN_MS]\n"
" Test running longer than [TIME_IN_MS] will be warned.\n"
" It takes effect only in isolation mode. Default warnline is 2000 ms.\n"
" --gtest-filter=POSITIVE_PATTERNS[-NEGATIVE_PATTERNS]\n"
" Used as a synonym for --gtest_filter option in gtest.\n"
"\nDefault bionic unit test option is -j.\n"
"\n");
}
enum TestResult {
TEST_SUCCESS = 0,
TEST_FAILED,
TEST_TIMEOUT
};
class Test {
public:
Test() {} // For std::vector<Test>.
explicit Test(const char* name) : name_(name) {}
const std::string& GetName() const { return name_; }
void SetResult(TestResult result) { result_ = result; }
TestResult GetResult() const { return result_; }
void SetTestTime(int64_t elapsed_time_ns) { elapsed_time_ns_ = elapsed_time_ns; }
int64_t GetTestTime() const { return elapsed_time_ns_; }
void AppendFailureMessage(const std::string& s) { failure_message_ += s; }
const std::string& GetFailureMessage() const { return failure_message_; }
private:
const std::string name_;
TestResult result_;
int64_t elapsed_time_ns_;
std::string failure_message_;
};
class TestCase {
public:
TestCase() {} // For std::vector<TestCase>.
explicit TestCase(const char* name) : name_(name) {}
const std::string& GetName() const { return name_; }
void AppendTest(const char* test_name) {
test_list_.push_back(Test(test_name));
}
size_t TestCount() const { return test_list_.size(); }
std::string GetTestName(size_t test_id) const {
VerifyTestId(test_id);
return name_ + "." + test_list_[test_id].GetName();
}
Test& GetTest(size_t test_id) {
VerifyTestId(test_id);
return test_list_[test_id];
}
const Test& GetTest(size_t test_id) const {
VerifyTestId(test_id);
return test_list_[test_id];
}
void SetTestResult(size_t test_id, TestResult result) {
VerifyTestId(test_id);
test_list_[test_id].SetResult(result);
}
TestResult GetTestResult(size_t test_id) const {
VerifyTestId(test_id);
return test_list_[test_id].GetResult();
}
void SetTestTime(size_t test_id, int64_t elapsed_time_ns) {
VerifyTestId(test_id);
test_list_[test_id].SetTestTime(elapsed_time_ns);
}
int64_t GetTestTime(size_t test_id) const {
VerifyTestId(test_id);
return test_list_[test_id].GetTestTime();
}
private:
void VerifyTestId(size_t test_id) const {
if(test_id >= test_list_.size()) {
fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id, test_list_.size());
exit(1);
}
}
private:
const std::string name_;
std::vector<Test> test_list_;
};
// This is the file descriptor used by the child process to write failure message.
// The parent process will collect the information and dump to stdout / xml file.
static int child_output_fd;
class TestResultPrinter : public testing::EmptyTestEventListener {
public:
TestResultPrinter() : pinfo_(NULL) {}
virtual void OnTestStart(const testing::TestInfo& test_info) {
pinfo_ = &test_info; // Record test_info for use in OnTestPartResult.
}
virtual void OnTestPartResult(const testing::TestPartResult& result);
private:
const testing::TestInfo* pinfo_;
};
// Called after an assertion failure.
void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result) {
// If the test part succeeded, we don't need to do anything.
if (result.type() == testing::TestPartResult::kSuccess)
return;
// Print failure message from the assertion (e.g. expected this and got that).
char buf[1024];
snprintf(buf, sizeof(buf), "%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(),
result.line_number(),
pinfo_->test_case_name(),
pinfo_->name(),
result.message());
int towrite = strlen(buf);
char* p = buf;
while (towrite > 0) {
ssize_t write_count = TEMP_FAILURE_RETRY(write(child_output_fd, p, towrite));
if (write_count == -1) {
fprintf(stderr, "failed to write child_output_fd: %s\n", strerror(errno));
exit(1);
} else {
towrite -= write_count;
p += write_count;
}
}
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
static bool EnumerateTests(int argc, char** argv, std::vector<TestCase>& testcase_list) {
std::string command;
for (int i = 0; i < argc; ++i) {
command += argv[i];
command += " ";
}
command += "--gtest_list_tests";
FILE* fp = popen(command.c_str(), "r");
if (fp == NULL) {
perror("popen");
return false;
}
char buf[200];
while (fgets(buf, sizeof(buf), fp) != NULL) {
char* p = buf;
while (*p != '\0' && isspace(*p)) {
++p;
}
if (*p == '\0') continue;
char* start = p;
while (*p != '\0' && !isspace(*p)) {
++p;
}
char* end = p;
while (*p != '\0' && isspace(*p)) {
++p;
}
if (*p != '\0') {
// This is not we want, gtest must meet with some error when parsing the arguments.
fprintf(stderr, "argument error, check with --help\n");
return false;
}
*end = '\0';
if (*(end - 1) == '.') {
*(end - 1) = '\0';
testcase_list.push_back(TestCase(start));
} else {
testcase_list.back().AppendTest(start);
}
}
int result = pclose(fp);
return (result != -1 && WEXITSTATUS(result) == 0);
}
// Part of the following *Print functions are copied from external/gtest/src/gtest.cc:
// PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter
// is defined and used in gtest.cc, which is hard to reuse.
static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, size_t iteration,
size_t iteration_count) {
if (iteration_count > 1) {
printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration);
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
size_t testcase_count = testcase_list.size();
size_t test_count = 0;
for (const auto& testcase : testcase_list) {
test_count += testcase.TestCount();
}
printf("Running %zu %s from %zu %s.\n",
test_count, (test_count == 1) ? "test" : "tests",
testcase_count, (testcase_count == 1) ? "test case" : "test cases");
fflush(stdout);
}
static void OnTestEndPrint(const TestCase& testcase, size_t test_id) {
TestResult result = testcase.GetTestResult(test_id);
if (result == TEST_SUCCESS) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else if (result == TEST_FAILED) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
} else if (result == TEST_TIMEOUT) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
}
printf("%s", testcase.GetTestName(test_id).c_str());
if (testing::GTEST_FLAG(print_time)) {
printf(" (%" PRId64 " ms)\n", testcase.GetTestTime(test_id) / 1000000);
} else {
printf("\n");
}
const std::string& failure_message = testcase.GetTest(test_id).GetFailureMessage();
printf("%s", failure_message.c_str());
fflush(stdout);
}
static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, size_t /*iteration*/,
int64_t elapsed_time_ns) {
std::vector<std::string> fail_test_name_list;
std::vector<std::pair<std::string, int64_t>> timeout_test_list;
// For tests run exceed warnline but not timeout.
std::vector<std::tuple<std::string, int64_t, int>> slow_test_list;
size_t testcase_count = testcase_list.size();
size_t test_count = 0;
size_t success_test_count = 0;
for (const auto& testcase : testcase_list) {
test_count += testcase.TestCount();
for (size_t i = 0; i < testcase.TestCount(); ++i) {
TestResult result = testcase.GetTestResult(i);
if (result == TEST_SUCCESS) {
++success_test_count;
} else if (result == TEST_FAILED) {
fail_test_name_list.push_back(testcase.GetTestName(i));
} else if (result == TEST_TIMEOUT) {
timeout_test_list.push_back(std::make_pair(testcase.GetTestName(i),
testcase.GetTestTime(i)));
}
if (result != TEST_TIMEOUT &&
testcase.GetTestTime(i) / 1000000 >= GetWarnlineInfo(testcase.GetTestName(i))) {
slow_test_list.push_back(std::make_tuple(testcase.GetTestName(i),
testcase.GetTestTime(i),
GetWarnlineInfo(testcase.GetTestName(i))));
}
}
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests",
testcase_count, (testcase_count == 1) ? "test case" : "test cases");
if (testing::GTEST_FLAG(print_time)) {
printf(" (%" PRId64 " ms total)", elapsed_time_ns / 1000000);
}
printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASS ] ");
printf("%zu %s.\n", success_test_count, (success_test_count == 1) ? "test" : "tests");
// Print tests failed.
size_t fail_test_count = fail_test_name_list.size();
if (fail_test_count > 0) {
ColoredPrintf(COLOR_RED, "[ FAIL ] ");
printf("%zu %s, listed below:\n", fail_test_count, (fail_test_count == 1) ? "test" : "tests");
for (const auto& name : fail_test_name_list) {
ColoredPrintf(COLOR_RED, "[ FAIL ] ");
printf("%s\n", name.c_str());
}
}
// Print tests run timeout.
size_t timeout_test_count = timeout_test_list.size();
if (timeout_test_count > 0) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests");
for (const auto& timeout_pair : timeout_test_list) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (stopped at %" PRId64 " ms)\n", timeout_pair.first.c_str(),
timeout_pair.second / 1000000);
}
}
// Print tests run exceed warnline.
size_t slow_test_count = slow_test_list.size();
if (slow_test_count > 0) {
ColoredPrintf(COLOR_YELLOW, "[ SLOW ] ");
printf("%zu %s, listed below:\n", slow_test_count, (slow_test_count == 1) ? "test" : "tests");
for (const auto& slow_tuple : slow_test_list) {
ColoredPrintf(COLOR_YELLOW, "[ SLOW ] ");
printf("%s (%" PRId64 " ms, exceed warnline %d ms)\n", std::get<0>(slow_tuple).c_str(),
std::get<1>(slow_tuple) / 1000000, std::get<2>(slow_tuple));
}
}
if (fail_test_count > 0) {
printf("\n%2zu FAILED %s\n", fail_test_count, (fail_test_count == 1) ? "TEST" : "TESTS");
}
if (timeout_test_count > 0) {
printf("%2zu TIMEOUT %s\n", timeout_test_count, (timeout_test_count == 1) ? "TEST" : "TESTS");
}
if (slow_test_count > 0) {
printf("%2zu SLOW %s\n", slow_test_count, (slow_test_count == 1) ? "TEST" : "TESTS");
}
fflush(stdout);
}
// Output xml file when --gtest_output is used, write this function as we can't reuse
// gtest.cc:XmlUnitTestResultPrinter. The reason is XmlUnitTestResultPrinter is totally
// defined in gtest.cc and not expose to outside. What's more, as we don't run gtest in
// the parent process, we don't have gtest classes which are needed by XmlUnitTestResultPrinter.
void OnTestIterationEndXmlPrint(const std::string& xml_output_filename,
const std::vector<TestCase>& testcase_list,
time_t epoch_iteration_start_time,
int64_t elapsed_time_ns) {
FILE* fp = fopen(xml_output_filename.c_str(), "w");
if (fp == NULL) {
fprintf(stderr, "failed to open '%s': %s\n", xml_output_filename.c_str(), strerror(errno));
exit(1);
}
size_t total_test_count = 0;
size_t total_failed_count = 0;
std::vector<size_t> failed_count_list(testcase_list.size(), 0);
std::vector<int64_t> elapsed_time_list(testcase_list.size(), 0);
for (size_t i = 0; i < testcase_list.size(); ++i) {
auto& testcase = testcase_list[i];
total_test_count += testcase.TestCount();
for (size_t j = 0; j < testcase.TestCount(); ++j) {
if (testcase.GetTestResult(j) != TEST_SUCCESS) {
++failed_count_list[i];
}
elapsed_time_list[i] += testcase.GetTestTime(j);
}
total_failed_count += failed_count_list[i];
}
const tm* time_struct = localtime(&epoch_iteration_start_time);
char timestamp[40];
snprintf(timestamp, sizeof(timestamp), "%4d-%02d-%02dT%02d:%02d:%02d",
time_struct->tm_year + 1900, time_struct->tm_mon + 1, time_struct->tm_mday,
time_struct->tm_hour, time_struct->tm_min, time_struct->tm_sec);
fputs("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", fp);
fprintf(fp, "<testsuites tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
total_test_count, total_failed_count);
fprintf(fp, " timestamp=\"%s\" time=\"%.3lf\" name=\"AllTests\">\n", timestamp, elapsed_time_ns / 1e9);
for (size_t i = 0; i < testcase_list.size(); ++i) {
auto& testcase = testcase_list[i];
fprintf(fp, " <testsuite name=\"%s\" tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
testcase.GetName().c_str(), testcase.TestCount(), failed_count_list[i]);
fprintf(fp, " time=\"%.3lf\">\n", elapsed_time_list[i] / 1e9);
for (size_t j = 0; j < testcase.TestCount(); ++j) {
fprintf(fp, " <testcase name=\"%s\" status=\"run\" time=\"%.3lf\" classname=\"%s\"",
testcase.GetTest(j).GetName().c_str(), testcase.GetTestTime(j) / 1e9,
testcase.GetName().c_str());
if (testcase.GetTestResult(j) == TEST_SUCCESS) {
fputs(" />\n", fp);
} else {
fputs(">\n", fp);
const std::string& failure_message = testcase.GetTest(j).GetFailureMessage();
fprintf(fp, " <failure message=\"%s\" type=\"\">\n", failure_message.c_str());
fputs(" </failure>\n", fp);
fputs(" </testcase>\n", fp);
}
}
fputs(" </testsuite>\n", fp);
}
fputs("</testsuites>\n", fp);
fclose(fp);
}
// Forked Child process, run the single test.
static void ChildProcessFn(int argc, char** argv, const std::string& test_name) {
char** new_argv = new char*[argc + 2];
memcpy(new_argv, argv, sizeof(char*) * argc);
char* filter_arg = new char [test_name.size() + 20];
strcpy(filter_arg, "--gtest_filter=");
strcat(filter_arg, test_name.c_str());
new_argv[argc] = filter_arg;
new_argv[argc + 1] = NULL;
int new_argc = argc + 1;
testing::InitGoogleTest(&new_argc, new_argv);
int result = RUN_ALL_TESTS();
exit(result);
}
struct ChildProcInfo {
pid_t pid;
int64_t start_time_ns;
int64_t deadline_time_ns;
size_t testcase_id, test_id;
bool done_flag;
bool timeout_flag;
int exit_status;
int child_read_fd;
ChildProcInfo() : pid(0) {}
};
static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
pid_t result;
int status;
bool loop_flag = true;
while (true) {
while ((result = waitpid(-1, &status, WNOHANG)) == -1) {
if (errno != EINTR) {
break;
}
}
if (result == -1) {
perror("waitpid");
exit(1);
} else if (result == 0) {
// Check child timeout.
int64_t current_time_ns = NanoTime();
for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].deadline_time_ns <= current_time_ns) {
child_proc_list[i].done_flag = true;
child_proc_list[i].timeout_flag = true;
loop_flag = false;
}
}
} else {
// Check child finish.
for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].pid == result) {
child_proc_list[i].done_flag = true;
child_proc_list[i].timeout_flag = false;
child_proc_list[i].exit_status = status;
loop_flag = false;
break;
}
}
}
if (!loop_flag) break;
// sleep 1 ms to avoid busy looping.
timespec sleep_time;
sleep_time.tv_sec = 0;
sleep_time.tv_nsec = 1000000;
nanosleep(&sleep_time, NULL);
}
}
static TestResult WaitChildProc(pid_t pid) {
pid_t result;
int exit_status;
while ((result = waitpid(pid, &exit_status, 0)) == -1) {
if (errno != EINTR) {
break;
}
}
TestResult test_result = TEST_SUCCESS;
if (result != pid || WEXITSTATUS(exit_status) != 0) {
test_result = TEST_FAILED;
}
return test_result;
}
// We choose to use multi-fork and multi-wait here instead of multi-thread, because it always
// makes deadlock to use fork in multi-thread.
static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list,
size_t iteration_count, size_t job_count,
const std::string& xml_output_filename) {
// Stop default result printer to avoid environment setup/teardown information for each test.
testing::UnitTest::GetInstance()->listeners().Release(
testing::UnitTest::GetInstance()->listeners().default_result_printer());
testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter);
for (size_t iteration = 1; iteration <= iteration_count; ++iteration) {
OnTestIterationStartPrint(testcase_list, iteration, iteration_count);
int64_t iteration_start_time_ns = NanoTime();
time_t epoch_iteration_start_time = time(NULL);
// Run up to job_count tests in parallel, each test in a child process.
std::vector<ChildProcInfo> child_proc_list(job_count);
// Next test to run is [next_testcase_id:next_test_id].
size_t next_testcase_id = 0;
size_t next_test_id = 0;
// Record how many tests are finished.
std::vector<size_t> finished_test_count_list(testcase_list.size(), 0);
size_t finished_testcase_count = 0;
while (finished_testcase_count < testcase_list.size()) {
// Fork up to job_count child processes.
for (auto& child_proc : child_proc_list) {
if (child_proc.pid == 0 && next_testcase_id < testcase_list.size()) {
std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id);
int pipefd[2];
int ret = pipe(pipefd);
if (ret == -1) {
perror("pipe2 in RunTestInSeparateProc");
exit(1);
}
pid_t pid = fork();
if (pid == -1) {
perror("fork in RunTestInSeparateProc");
exit(1);
} else if (pid == 0) {
close(pipefd[0]);
child_output_fd = pipefd[1];
// Run child process test, never return.
ChildProcessFn(argc, argv, test_name);
}
// Parent process
close(pipefd[1]);
child_proc.child_read_fd = pipefd[0];
child_proc.pid = pid;
child_proc.start_time_ns = NanoTime();
child_proc.deadline_time_ns = child_proc.start_time_ns +
GetDeadlineInfo(test_name) * 1000000LL;
child_proc.testcase_id = next_testcase_id;
child_proc.test_id = next_test_id;
child_proc.done_flag = false;
if (++next_test_id == testcase_list[next_testcase_id].TestCount()) {
next_test_id = 0;
++next_testcase_id;
}
}
}
// Wait for any child proc finish or timeout.
WaitChildProcs(child_proc_list);
// Collect result.
for (auto& child_proc : child_proc_list) {
if (child_proc.pid != 0 && child_proc.done_flag == true) {
size_t testcase_id = child_proc.testcase_id;
size_t test_id = child_proc.test_id;
TestCase& testcase = testcase_list[testcase_id];
testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time_ns);
// Kill and wait the timeout child process before we read failure message.
if (child_proc.timeout_flag) {
kill(child_proc.pid, SIGKILL);
WaitChildProc(child_proc.pid);
}
while (true) {
char buf[1024];
int ret = TEMP_FAILURE_RETRY(read(child_proc.child_read_fd, buf, sizeof(buf) - 1));
if (ret > 0) {
buf[ret] = '\0';
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else if (ret == 0) {
break; // Read end.
} else {
perror("read child_read_fd in RunTestInSeparateProc");
exit(1);
}
}
close(child_proc.child_read_fd);
if (child_proc.timeout_flag) {
testcase.SetTestResult(test_id, TEST_TIMEOUT);
char buf[1024];
snprintf(buf, sizeof(buf), "%s killed because of timeout at %" PRId64 " ms.\n",
testcase.GetTestName(test_id).c_str(),
testcase.GetTestTime(test_id) / 1000000);
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else if (WIFSIGNALED(child_proc.exit_status)) {
// Record signal terminated test as failed.
testcase.SetTestResult(test_id, TEST_FAILED);
char buf[1024];
snprintf(buf, sizeof(buf), "%s terminated by signal: %s.\n",
testcase.GetTestName(test_id).c_str(),
strsignal(WTERMSIG(child_proc.exit_status)));
testcase.GetTest(test_id).AppendFailureMessage(buf);
} else {
testcase.SetTestResult(test_id, WEXITSTATUS(child_proc.exit_status) == 0 ?
TEST_SUCCESS : TEST_FAILED);
}
OnTestEndPrint(testcase, test_id);
if (++finished_test_count_list[testcase_id] == testcase.TestCount()) {
++finished_testcase_count;
}
child_proc.pid = 0;
child_proc.done_flag = false;
}
}
}
int64_t elapsed_time_ns = NanoTime() - iteration_start_time_ns;
OnTestIterationEndPrint(testcase_list, iteration, elapsed_time_ns);
if (!xml_output_filename.empty()) {
OnTestIterationEndXmlPrint(xml_output_filename, testcase_list, epoch_iteration_start_time,
elapsed_time_ns);
}
}
}
static size_t GetProcessorCount() {
return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN));
}
static void AddGtestFilterSynonym(std::vector<char*>& args) {
// Support --gtest-filter as a synonym for --gtest_filter.
for (size_t i = 1; i < args.size(); ++i) {
if (strncmp(args[i], "--gtest-filter", strlen("--gtest-filter")) == 0) {
args[i][7] = '_';
}
}
}
struct IsolationTestOptions {
bool isolate;
size_t job_count;
int test_deadline_ms;
int test_warnline_ms;
std::string gtest_color;
bool gtest_print_time;
size_t gtest_repeat;
std::string gtest_output;
};
// Pick options not for gtest: There are two parts in args, one part is used in isolation test mode
// as described in PrintHelpInfo(), the other part is handled by testing::InitGoogleTest() in
// gtest. PickOptions() picks the first part into IsolationTestOptions structure, leaving the second
// part in args.
// Arguments:
// args is used to pass in all command arguments, and pass out only the part of options for gtest.
// options is used to pass out test options in isolation mode.
// Return false if there is error in arguments.
static bool PickOptions(std::vector<char*>& args, IsolationTestOptions& options) {
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--help") == 0 || strcmp(args[i], "-h") == 0) {
PrintHelpInfo();
options.isolate = false;
return true;
}
}
AddGtestFilterSynonym(args);
// if --bionic-selftest argument is used, only enable self tests, otherwise remove self tests.
bool enable_selftest = false;
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--bionic-selftest") == 0) {
// This argument is to enable "bionic_selftest*" for self test, and is not shown in help info.
// Don't remove this option from arguments.
enable_selftest = true;
}
}
std::string gtest_filter_str;
for (size_t i = args.size() - 1; i >= 1; --i) {
if (strncmp(args[i], "--gtest_filter=", strlen("--gtest_filter=")) == 0) {
gtest_filter_str = std::string(args[i]);
args.erase(args.begin() + i);
break;
}
}
if (enable_selftest == true) {
args.push_back(strdup("--gtest_filter=bionic_selftest*"));
} else {
if (gtest_filter_str == "") {
gtest_filter_str = "--gtest_filter=-bionic_selftest*";
} else {
// Find if '-' for NEGATIVE_PATTERNS exists.
if (gtest_filter_str.find(":-") != std::string::npos) {
gtest_filter_str += ":bionic_selftest*";
} else {
gtest_filter_str += ":-bionic_selftest*";
}
}
args.push_back(strdup(gtest_filter_str.c_str()));
}
options.isolate = true;
// Parse arguments that make us can't run in isolation mode.
for (size_t i = 1; i < args.size(); ++i) {
if (strcmp(args[i], "--no-isolate") == 0) {
options.isolate = false;
} else if (strcmp(args[i], "--gtest_list_tests") == 0) {
options.isolate = false;
}
}
// Stop parsing if we will not run in isolation mode.
if (options.isolate == false) {
return true;
}
// Init default isolation test options.
options.job_count = GetProcessorCount();
options.test_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
options.test_warnline_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_MS;
options.gtest_color = testing::GTEST_FLAG(color);
options.gtest_print_time = testing::GTEST_FLAG(print_time);
options.gtest_repeat = testing::GTEST_FLAG(repeat);
options.gtest_output = testing::GTEST_FLAG(output);
// Parse arguments speficied for isolation mode.
for (size_t i = 1; i < args.size(); ++i) {
if (strncmp(args[i], "-j", strlen("-j")) == 0) {
char* p = args[i] + strlen("-j");
int count = 0;
if (*p != '\0') {
// Argument like -j5.
count = atoi(p);
} else if (args.size() > i + 1) {
// Arguments like -j 5.
count = atoi(args[i + 1]);
++i;
}
if (count <= 0) {
fprintf(stderr, "invalid job count: %d\n", count);
return false;
}
options.job_count = static_cast<size_t>(count);
} else if (strncmp(args[i], "--deadline=", strlen("--deadline=")) == 0) {
int time_ms = atoi(args[i] + strlen("--deadline="));
if (time_ms <= 0) {
fprintf(stderr, "invalid deadline: %d\n", time_ms);
return false;
}
options.test_deadline_ms = time_ms;
} else if (strncmp(args[i], "--warnline=", strlen("--warnline=")) == 0) {
int time_ms = atoi(args[i] + strlen("--warnline="));
if (time_ms <= 0) {
fprintf(stderr, "invalid warnline: %d\n", time_ms);
return false;
}
options.test_warnline_ms = time_ms;
} else if (strncmp(args[i], "--gtest_color=", strlen("--gtest_color=")) == 0) {
options.gtest_color = args[i] + strlen("--gtest_color=");
} else if (strcmp(args[i], "--gtest_print_time=0") == 0) {
options.gtest_print_time = false;
} else if (strncmp(args[i], "--gtest_repeat=", strlen("--gtest_repeat=")) == 0) {
int repeat = atoi(args[i] + strlen("--gtest_repeat="));
if (repeat < 0) {
fprintf(stderr, "invalid gtest_repeat count: %d\n", repeat);
return false;
}
options.gtest_repeat = repeat;
// Remove --gtest_repeat=xx from arguments, so child process only run one iteration for a single test.
args.erase(args.begin() + i);
--i;
} else if (strncmp(args[i], "--gtest_output=", strlen("--gtest_output=")) == 0) {
std::string output = args[i] + strlen("--gtest_output=");
// generate output xml file path according to the strategy in gtest.
bool success = true;
if (strncmp(output.c_str(), "xml:", strlen("xml:")) == 0) {
output = output.substr(strlen("xml:"));
if (output.size() == 0) {
success = false;
}
// Make absolute path.
if (success && output[0] != '/') {
char* cwd = getcwd(NULL, 0);
if (cwd != NULL) {
output = std::string(cwd) + "/" + output;
free(cwd);
} else {
success = false;
}
}
// Add file name if output is a directory.
if (success && output.back() == '/') {
output += "test_details.xml";
}
}
if (success) {
options.gtest_output = output;
} else {
fprintf(stderr, "invalid gtest_output file: %s\n", args[i]);
return false;
}
// Remove --gtest_output=xxx from arguments, so child process will not write xml file.
args.erase(args.begin() + i);
--i;
}
}
// Add --no-isolate in args to prevent child process from running in isolation mode again.
// As DeathTest will try to call execve(), this argument should always be added.
args.insert(args.begin() + 1, strdup("--no-isolate"));
return true;
}
int main(int argc, char** argv) {
std::vector<char*> arg_list;
for (int i = 0; i < argc; ++i) {
arg_list.push_back(argv[i]);
}
IsolationTestOptions options;
if (PickOptions(arg_list, options) == false) {
return 1;
}
if (options.isolate == true) {
// Set global variables.
global_test_run_deadline_ms = options.test_deadline_ms;
global_test_run_warnline_ms = options.test_warnline_ms;
testing::GTEST_FLAG(color) = options.gtest_color.c_str();
testing::GTEST_FLAG(print_time) = options.gtest_print_time;
std::vector<TestCase> testcase_list;
argc = static_cast<int>(arg_list.size());
arg_list.push_back(NULL);
if (EnumerateTests(argc, arg_list.data(), testcase_list) == false) {
return 1;
}
RunTestInSeparateProc(argc, arg_list.data(), testcase_list, options.gtest_repeat,
options.job_count, options.gtest_output);
} else {
argc = static_cast<int>(arg_list.size());
arg_list.push_back(NULL);
testing::InitGoogleTest(&argc, arg_list.data());
return RUN_ALL_TESTS();
}
return 0;
}
//################################################################################
// Bionic Gtest self test, run this by --bionic-selftest option.
TEST(bionic_selftest, test_success) {
ASSERT_EQ(1, 1);
}
TEST(bionic_selftest, test_fail) {
ASSERT_EQ(0, 1);
}
TEST(bionic_selftest, test_time_warn) {
sleep(4);
}
TEST(bionic_selftest, test_timeout) {
while (1) {}
}
TEST(bionic_selftest, test_signal_SEGV_terminated) {
char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0")));
*p = 3;
}
class bionic_selftest_DeathTest : public BionicDeathTest {};
static void deathtest_helper_success() {
ASSERT_EQ(1, 1);
exit(0);
}
TEST_F(bionic_selftest_DeathTest, success) {
ASSERT_EXIT(deathtest_helper_success(), ::testing::ExitedWithCode(0), "");
}
static void deathtest_helper_fail() {
ASSERT_EQ(1, 0);
}
TEST_F(bionic_selftest_DeathTest, fail) {
ASSERT_EXIT(deathtest_helper_fail(), ::testing::ExitedWithCode(0), "");
}