715 lines
22 KiB
C++
715 lines
22 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/atomics.h>
|
|
#include <sys/system_properties.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <pthread.h>
|
|
#include <unwind.h>
|
|
#include <unistd.h>
|
|
|
|
#include "private/bionic_tls.h"
|
|
#include "debug_mapinfo.h"
|
|
#include "debug_stacktrace.h"
|
|
#include "private/libc_logging.h"
|
|
|
|
/*
|
|
* ===========================================================================
|
|
* Deadlock prediction
|
|
* ===========================================================================
|
|
*/
|
|
/*
|
|
The idea is to predict the possibility of deadlock by recording the order
|
|
in which locks are acquired. If we see an attempt to acquire a lock
|
|
out of order, we can identify the locks and offending code.
|
|
|
|
To make this work, we need to keep track of the locks held by each thread,
|
|
and create history trees for each lock. When a thread tries to acquire
|
|
a new lock, we walk through the "history children" of the lock, looking
|
|
for a match with locks the thread already holds. If we find a match,
|
|
it means the thread has made a request that could result in a deadlock.
|
|
|
|
To support recursive locks, we always allow re-locking a currently-held
|
|
lock, and maintain a recursion depth count.
|
|
|
|
An ASCII-art example, where letters represent locks:
|
|
|
|
A
|
|
/|\
|
|
/ | \
|
|
B | D
|
|
\ |
|
|
\|
|
|
C
|
|
|
|
The above is the tree we'd have after handling lock synchronization
|
|
sequences "ABC", "AC", "AD". A has three children, {B, C, D}. C is also
|
|
a child of B. (The lines represent pointers between parent and child.
|
|
Every node can have multiple parents and multiple children.)
|
|
|
|
If we hold AC, and want to lock B, we recursively search through B's
|
|
children to see if A or C appears. It does, so we reject the attempt.
|
|
(A straightforward way to implement it: add a link from C to B, then
|
|
determine whether the graph starting at B contains a cycle.)
|
|
|
|
If we hold AC and want to lock D, we would succeed, creating a new link
|
|
from C to D.
|
|
|
|
Updates to MutexInfo structs are only allowed for the thread that holds
|
|
the lock, so we actually do most of our deadlock prediction work after
|
|
the lock has been acquired.
|
|
*/
|
|
|
|
// =============================================================================
|
|
// log functions
|
|
// =============================================================================
|
|
|
|
#define LOGD(format, ...) \
|
|
__libc_format_log(ANDROID_LOG_DEBUG, "pthread_debug", (format), ##__VA_ARGS__ )
|
|
|
|
#define LOGW(format, ...) \
|
|
__libc_format_log(ANDROID_LOG_WARN, "pthread_debug", (format), ##__VA_ARGS__ )
|
|
|
|
#define LOGE(format, ...) \
|
|
__libc_format_log(ANDROID_LOG_ERROR, "pthread_debug", (format), ##__VA_ARGS__ )
|
|
|
|
#define LOGI(format, ...) \
|
|
__libc_format_log(ANDROID_LOG_INFO, "pthread_debug", (format), ##__VA_ARGS__ )
|
|
|
|
static const char* const kStartBanner =
|
|
"===============================================================";
|
|
|
|
static const char* const kEndBanner =
|
|
"===============================================================";
|
|
|
|
extern const char* __progname;
|
|
|
|
#define STACK_TRACE_DEPTH 16
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* level <= 0 : deadlock prediction disabled
|
|
* level 1 : deadlock prediction enabled, w/o call stacks
|
|
* level 2 : deadlock prediction enabled w/ call stacks
|
|
*/
|
|
#define CAPTURE_CALLSTACK 2
|
|
static int sPthreadDebugLevel = 0;
|
|
static pid_t sPthreadDebugDisabledThread = -1;
|
|
static pthread_mutex_t sDbgLock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/****************************************************************************/
|
|
|
|
/* some simple/lame malloc replacement
|
|
* NOT thread-safe and leaks everything
|
|
*/
|
|
|
|
#define DBG_ALLOC_BLOCK_SIZE PAGESIZE
|
|
static size_t sDbgAllocOffset = DBG_ALLOC_BLOCK_SIZE;
|
|
static char* sDbgAllocPtr = NULL;
|
|
|
|
template <typename T>
|
|
static T* DbgAllocLocked(size_t count = 1) {
|
|
size_t size = sizeof(T) * count;
|
|
if ((sDbgAllocOffset + size) > DBG_ALLOC_BLOCK_SIZE) {
|
|
sDbgAllocOffset = 0;
|
|
sDbgAllocPtr = reinterpret_cast<char*>(mmap(NULL, DBG_ALLOC_BLOCK_SIZE,
|
|
PROT_READ|PROT_WRITE,
|
|
MAP_ANON | MAP_PRIVATE, 0, 0));
|
|
if (sDbgAllocPtr == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
}
|
|
void* addr = sDbgAllocPtr + sDbgAllocOffset;
|
|
sDbgAllocOffset += size;
|
|
return reinterpret_cast<T*>(addr);
|
|
}
|
|
|
|
static void* debug_realloc(void *ptr, size_t size, size_t old_size) {
|
|
void* addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
|
|
MAP_ANON | MAP_PRIVATE, 0, 0);
|
|
if (addr != MAP_FAILED) {
|
|
if (ptr) {
|
|
memcpy(addr, ptr, old_size);
|
|
munmap(ptr, old_size);
|
|
}
|
|
} else {
|
|
addr = NULL;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
struct MutexInfo;
|
|
|
|
typedef struct CallStack {
|
|
uintptr_t depth;
|
|
uintptr_t* addrs;
|
|
} CallStack;
|
|
|
|
typedef struct MutexInfo* MutexInfoListEntry;
|
|
typedef struct CallStack CallStackListEntry;
|
|
|
|
typedef struct GrowingList {
|
|
int alloc;
|
|
int count;
|
|
union {
|
|
void* data;
|
|
MutexInfoListEntry* list;
|
|
CallStackListEntry* stack;
|
|
};
|
|
} GrowingList;
|
|
|
|
typedef GrowingList MutexInfoList;
|
|
typedef GrowingList CallStackList;
|
|
|
|
typedef struct MutexInfo {
|
|
// thread currently holding the lock or 0
|
|
pid_t owner;
|
|
|
|
// most-recently-locked doubly-linked list
|
|
struct MutexInfo* prev;
|
|
struct MutexInfo* next;
|
|
|
|
// for reentrant locks
|
|
int lockCount;
|
|
// when looking for loops in the graph, marks visited nodes
|
|
int historyMark;
|
|
// the actual mutex
|
|
pthread_mutex_t* mutex;
|
|
// list of locks directly acquired AFTER this one in the same thread
|
|
MutexInfoList children;
|
|
// list of locks directly acquired BEFORE this one in the same thread
|
|
MutexInfoList parents;
|
|
// list of call stacks when a new link is established to this lock form its parent
|
|
CallStackList stacks;
|
|
// call stack when this lock was acquired last
|
|
int stackDepth;
|
|
uintptr_t stackTrace[STACK_TRACE_DEPTH];
|
|
} MutexInfo;
|
|
|
|
static void growingListInit(GrowingList* list) {
|
|
list->alloc = 0;
|
|
list->count = 0;
|
|
list->data = NULL;
|
|
}
|
|
|
|
static void growingListAdd(GrowingList* pList, size_t objSize) {
|
|
if (pList->count == pList->alloc) {
|
|
size_t oldsize = pList->alloc * objSize;
|
|
pList->alloc += PAGESIZE / objSize;
|
|
size_t size = pList->alloc * objSize;
|
|
pList->data = debug_realloc(pList->data, size, oldsize);
|
|
}
|
|
pList->count++;
|
|
}
|
|
|
|
static void initMutexInfo(MutexInfo* object, pthread_mutex_t* mutex) {
|
|
object->owner = 0;
|
|
object->prev = 0;
|
|
object->next = 0;
|
|
object->lockCount = 0;
|
|
object->historyMark = 0;
|
|
object->mutex = mutex;
|
|
growingListInit(&object->children);
|
|
growingListInit(&object->parents);
|
|
growingListInit(&object->stacks);
|
|
object->stackDepth = 0;
|
|
}
|
|
|
|
typedef struct ThreadInfo {
|
|
pid_t pid;
|
|
MutexInfo* mrl;
|
|
} ThreadInfo;
|
|
|
|
static void initThreadInfo(ThreadInfo* object, pid_t pid) {
|
|
object->pid = pid;
|
|
object->mrl = NULL;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static MutexInfo* get_mutex_info(pthread_mutex_t *mutex);
|
|
static void mutex_lock_checked(MutexInfo* mrl, MutexInfo* object);
|
|
static void mutex_unlock_checked(MutexInfo* object);
|
|
|
|
/****************************************************************************/
|
|
|
|
extern "C" int pthread_mutex_lock_impl(pthread_mutex_t *mutex);
|
|
extern "C" int pthread_mutex_unlock_impl(pthread_mutex_t *mutex);
|
|
|
|
static int pthread_mutex_lock_unchecked(pthread_mutex_t *mutex) {
|
|
return pthread_mutex_lock_impl(mutex);
|
|
}
|
|
|
|
static int pthread_mutex_unlock_unchecked(pthread_mutex_t *mutex) {
|
|
return pthread_mutex_unlock_impl(mutex);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static void dup_backtrace(CallStack* stack, size_t count, uintptr_t const* addrs) {
|
|
stack->depth = count;
|
|
stack->addrs = DbgAllocLocked<uintptr_t>(count);
|
|
memcpy(stack->addrs, addrs, count * sizeof(uintptr_t));
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static int historyListHas(
|
|
const MutexInfoList* list, MutexInfo const * obj) {
|
|
int i;
|
|
for (i=0; i<list->count; i++) {
|
|
if (list->list[i] == obj) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void historyListAdd(MutexInfoList* pList, MutexInfo* obj) {
|
|
growingListAdd(pList, sizeof(MutexInfoListEntry));
|
|
pList->list[pList->count - 1] = obj;
|
|
}
|
|
|
|
static int historyListRemove(MutexInfoList* pList, MutexInfo* obj) {
|
|
int i;
|
|
for (i = pList->count-1; i >= 0; i--) {
|
|
if (pList->list[i] == obj) {
|
|
break;
|
|
}
|
|
}
|
|
if (i < 0) {
|
|
// not found!
|
|
return 0;
|
|
}
|
|
|
|
if (i != pList->count-1) {
|
|
// copy the last entry to the new free slot
|
|
pList->list[i] = pList->list[pList->count-1];
|
|
}
|
|
pList->count--;
|
|
memset(&pList->list[pList->count], 0, sizeof(MutexInfoListEntry));
|
|
return 1;
|
|
}
|
|
|
|
static void linkParentToChild(MutexInfo* parent, MutexInfo* child) {
|
|
historyListAdd(&parent->children, child);
|
|
historyListAdd(&child->parents, parent);
|
|
}
|
|
|
|
static void unlinkParentFromChild(MutexInfo* parent, MutexInfo* child) {
|
|
historyListRemove(&parent->children, child);
|
|
historyListRemove(&child->parents, parent);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static void callstackListAdd(CallStackList* pList,
|
|
int count, uintptr_t const* addrs) {
|
|
growingListAdd(pList, sizeof(CallStackListEntry));
|
|
dup_backtrace(&pList->stack[pList->count - 1], count, addrs);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Recursively traverse the object hierarchy starting at "obj". We mark
|
|
* ourselves on entry and clear the mark on exit. If we ever encounter
|
|
* a marked object, we have a cycle.
|
|
*
|
|
* Returns "true" if all is well, "false" if we found a cycle.
|
|
*/
|
|
|
|
static int traverseTree(MutexInfo* obj, MutexInfo const* objParent)
|
|
{
|
|
/*
|
|
* Have we been here before?
|
|
*/
|
|
if (obj->historyMark) {
|
|
int stackDepth;
|
|
uintptr_t addrs[STACK_TRACE_DEPTH];
|
|
|
|
/* Turn off prediction temporarily in this thread while logging */
|
|
sPthreadDebugDisabledThread = gettid();
|
|
|
|
backtrace_startup();
|
|
|
|
LOGW("%s\n", kStartBanner);
|
|
LOGW("pid: %d, tid: %d >>> %s <<<", getpid(), gettid(), __progname);
|
|
LOGW("Illegal lock attempt:\n");
|
|
LOGW("--- pthread_mutex_t at %p\n", obj->mutex);
|
|
stackDepth = get_backtrace(addrs, STACK_TRACE_DEPTH);
|
|
log_backtrace(addrs, stackDepth);
|
|
|
|
LOGW("+++ Currently held locks in this thread (in reverse order):");
|
|
MutexInfo* cur = obj;
|
|
pid_t ourtid = gettid();
|
|
int i;
|
|
for (i=0 ; i<cur->parents.count ; i++) {
|
|
MutexInfo* parent = cur->parents.list[i];
|
|
if (parent->owner == ourtid) {
|
|
LOGW("--- pthread_mutex_t at %p\n", parent->mutex);
|
|
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
|
log_backtrace(parent->stackTrace, parent->stackDepth);
|
|
}
|
|
cur = parent;
|
|
break;
|
|
}
|
|
}
|
|
|
|
LOGW("+++ Earlier, the following lock order (from last to first) was established\n");
|
|
return 0;
|
|
}
|
|
|
|
obj->historyMark = 1;
|
|
|
|
MutexInfoList* pList = &obj->children;
|
|
int result = 1;
|
|
int i;
|
|
for (i = pList->count-1; i >= 0; i--) {
|
|
MutexInfo* child = pList->list[i];
|
|
if (!traverseTree(child, obj)) {
|
|
LOGW("--- pthread_mutex_t at %p\n", obj->mutex);
|
|
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
|
int index = historyListHas(&obj->parents, objParent);
|
|
if ((size_t)index < (size_t)obj->stacks.count) {
|
|
log_backtrace(obj->stacks.stack[index].addrs, obj->stacks.stack[index].depth);
|
|
} else {
|
|
log_backtrace(obj->stackTrace, obj->stackDepth);
|
|
}
|
|
}
|
|
result = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
obj->historyMark = 0;
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static void mutex_lock_checked(MutexInfo* mrl, MutexInfo* object)
|
|
{
|
|
pid_t tid = gettid();
|
|
if (object->owner == tid) {
|
|
object->lockCount++;
|
|
return;
|
|
}
|
|
|
|
object->owner = tid;
|
|
object->lockCount = 0;
|
|
|
|
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
|
// always record the call stack when acquiring a lock.
|
|
// it's not efficient, but is useful during diagnostics
|
|
object->stackDepth = get_backtrace(object->stackTrace, STACK_TRACE_DEPTH);
|
|
}
|
|
|
|
// no other locks held in this thread -- no deadlock possible!
|
|
if (mrl == NULL)
|
|
return;
|
|
|
|
// check if the lock we're trying to acquire is a direct descendant of
|
|
// the most recently locked mutex in this thread, in which case we're
|
|
// in a good situation -- no deadlock possible
|
|
if (historyListHas(&mrl->children, object) >= 0)
|
|
return;
|
|
|
|
pthread_mutex_lock_unchecked(&sDbgLock);
|
|
|
|
linkParentToChild(mrl, object);
|
|
if (!traverseTree(object, mrl)) {
|
|
backtrace_shutdown();
|
|
LOGW("%s\n", kEndBanner);
|
|
unlinkParentFromChild(mrl, object);
|
|
// reenable pthread debugging for this thread
|
|
sPthreadDebugDisabledThread = -1;
|
|
} else {
|
|
// record the call stack for this link
|
|
// NOTE: the call stack is added at the same index
|
|
// as mrl in object->parents[]
|
|
// ie: object->parents.count == object->stacks.count, which is
|
|
// also the index.
|
|
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
|
callstackListAdd(&object->stacks,
|
|
object->stackDepth, object->stackTrace);
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock_unchecked(&sDbgLock);
|
|
}
|
|
|
|
static void mutex_unlock_checked(MutexInfo* object)
|
|
{
|
|
pid_t tid = gettid();
|
|
if (object->owner == tid) {
|
|
if (object->lockCount == 0) {
|
|
object->owner = 0;
|
|
} else {
|
|
object->lockCount--;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// =============================================================================
|
|
// Hash Table functions
|
|
// =============================================================================
|
|
|
|
/****************************************************************************/
|
|
|
|
#define HASHTABLE_SIZE 256
|
|
|
|
typedef struct HashEntry HashEntry;
|
|
struct HashEntry {
|
|
size_t slot;
|
|
HashEntry* prev;
|
|
HashEntry* next;
|
|
void* data;
|
|
};
|
|
|
|
typedef struct HashTable HashTable;
|
|
struct HashTable {
|
|
HashEntry* slots[HASHTABLE_SIZE];
|
|
};
|
|
|
|
static HashTable sMutexMap;
|
|
static HashTable sThreadMap;
|
|
|
|
/****************************************************************************/
|
|
|
|
static uint32_t get_hashcode(void const * key, size_t keySize)
|
|
{
|
|
uint32_t h = keySize;
|
|
char const* data = (char const*)key;
|
|
size_t i;
|
|
for (i = 0; i < keySize; i++) {
|
|
h = h * 31 + *data;
|
|
data++;
|
|
}
|
|
return (uint32_t)h;
|
|
}
|
|
|
|
static size_t get_index(uint32_t h)
|
|
{
|
|
// We apply this secondary hashing discovered by Doug Lea to defend
|
|
// against bad hashes.
|
|
h += ~(h << 9);
|
|
h ^= (((unsigned int) h) >> 14);
|
|
h += (h << 4);
|
|
h ^= (((unsigned int) h) >> 10);
|
|
return (size_t)h & (HASHTABLE_SIZE - 1);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static void hashmap_init(HashTable* table) {
|
|
memset(table, 0, sizeof(HashTable));
|
|
}
|
|
|
|
static void hashmap_removeEntry(HashTable* table, HashEntry* entry)
|
|
{
|
|
HashEntry* prev = entry->prev;
|
|
HashEntry* next = entry->next;
|
|
if (prev != NULL) entry->prev->next = next;
|
|
if (next != NULL) entry->next->prev = prev;
|
|
if (prev == NULL) {
|
|
// we are the head of the list. set the head to be next
|
|
table->slots[entry->slot] = entry->next;
|
|
}
|
|
}
|
|
|
|
static HashEntry* hashmap_lookup(HashTable* table,
|
|
void const* key, size_t ksize,
|
|
int (*equals)(void const* data, void const* key))
|
|
{
|
|
const uint32_t hash = get_hashcode(key, ksize);
|
|
const size_t slot = get_index(hash);
|
|
|
|
HashEntry* entry = table->slots[slot];
|
|
while (entry) {
|
|
if (equals(entry->data, key)) {
|
|
break;
|
|
}
|
|
entry = entry->next;
|
|
}
|
|
|
|
if (entry == NULL) {
|
|
// create a new entry
|
|
entry = DbgAllocLocked<HashEntry>();
|
|
entry->data = NULL;
|
|
entry->slot = slot;
|
|
entry->prev = NULL;
|
|
entry->next = table->slots[slot];
|
|
if (entry->next != NULL) {
|
|
entry->next->prev = entry;
|
|
}
|
|
table->slots[slot] = entry;
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static int MutexInfo_equals(void const* data, void const* key) {
|
|
return ((MutexInfo const *)data)->mutex == *(pthread_mutex_t **)key;
|
|
}
|
|
|
|
static MutexInfo* get_mutex_info(pthread_mutex_t *mutex)
|
|
{
|
|
pthread_mutex_lock_unchecked(&sDbgLock);
|
|
|
|
HashEntry* entry = hashmap_lookup(&sMutexMap,
|
|
&mutex, sizeof(mutex),
|
|
&MutexInfo_equals);
|
|
if (entry->data == NULL) {
|
|
MutexInfo* mutex_info = DbgAllocLocked<MutexInfo>();
|
|
entry->data = mutex_info;
|
|
initMutexInfo(mutex_info, mutex);
|
|
}
|
|
|
|
pthread_mutex_unlock_unchecked(&sDbgLock);
|
|
|
|
return (MutexInfo *)entry->data;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static int ThreadInfo_equals(void const* data, void const* key) {
|
|
return ((ThreadInfo const *)data)->pid == *(pid_t *)key;
|
|
}
|
|
|
|
static ThreadInfo* get_thread_info(pid_t pid)
|
|
{
|
|
pthread_mutex_lock_unchecked(&sDbgLock);
|
|
|
|
HashEntry* entry = hashmap_lookup(&sThreadMap,
|
|
&pid, sizeof(pid),
|
|
&ThreadInfo_equals);
|
|
if (entry->data == NULL) {
|
|
ThreadInfo* thread_info = DbgAllocLocked<ThreadInfo>();
|
|
entry->data = thread_info;
|
|
initThreadInfo(thread_info, pid);
|
|
}
|
|
|
|
pthread_mutex_unlock_unchecked(&sDbgLock);
|
|
|
|
return (ThreadInfo *)entry->data;
|
|
}
|
|
|
|
static void push_most_recently_locked(MutexInfo* mrl) {
|
|
ThreadInfo* tinfo = get_thread_info(gettid());
|
|
mrl->next = NULL;
|
|
mrl->prev = tinfo->mrl;
|
|
tinfo->mrl = mrl;
|
|
}
|
|
|
|
static void remove_most_recently_locked(MutexInfo* mrl) {
|
|
ThreadInfo* tinfo = get_thread_info(gettid());
|
|
if (mrl->next) {
|
|
(mrl->next)->prev = mrl->prev;
|
|
}
|
|
if (mrl->prev) {
|
|
(mrl->prev)->next = mrl->next;
|
|
}
|
|
if (tinfo->mrl == mrl) {
|
|
tinfo->mrl = mrl->next;
|
|
}
|
|
}
|
|
|
|
static MutexInfo* get_most_recently_locked() {
|
|
ThreadInfo* tinfo = get_thread_info(gettid());
|
|
return tinfo->mrl;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/* pthread_debug_init() is called from libc_init_dynamic() just
|
|
* after system properties have been initialized
|
|
*/
|
|
|
|
extern "C" __LIBC_HIDDEN__ void pthread_debug_init() {
|
|
char env[PROP_VALUE_MAX];
|
|
if (__system_property_get("debug.libc.pthread", env)) {
|
|
int level = atoi(env);
|
|
if (level) {
|
|
LOGI("pthread deadlock detection level %d enabled for pid %d (%s)",
|
|
level, getpid(), __progname);
|
|
hashmap_init(&sMutexMap);
|
|
sPthreadDebugLevel = level;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we were allowed to grab the lock at this time. We do it
|
|
* *after* acquiring the lock, rather than before, so that we can
|
|
* freely update the MutexInfo struct. This seems counter-intuitive,
|
|
* but our goal is deadlock *prediction* not deadlock *prevention*.
|
|
* (If we actually deadlock, the situation is easy to diagnose from
|
|
* a thread dump, so there's no point making a special effort to do
|
|
* the checks before the lock is held.)
|
|
*/
|
|
|
|
extern "C" __LIBC_HIDDEN__ void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex)
|
|
{
|
|
if (sPthreadDebugLevel == 0) return;
|
|
// prediction disabled for this thread
|
|
if (sPthreadDebugDisabledThread == gettid())
|
|
return;
|
|
MutexInfo* object = get_mutex_info(mutex);
|
|
MutexInfo* mrl = get_most_recently_locked();
|
|
mutex_lock_checked(mrl, object);
|
|
push_most_recently_locked(object);
|
|
}
|
|
|
|
/*
|
|
* pthread_debug_mutex_unlock_check() must be called with the mutex
|
|
* still held (ie: before calling the real unlock)
|
|
*/
|
|
|
|
extern "C" __LIBC_HIDDEN__ void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex)
|
|
{
|
|
if (sPthreadDebugLevel == 0) return;
|
|
// prediction disabled for this thread
|
|
if (sPthreadDebugDisabledThread == gettid())
|
|
return;
|
|
MutexInfo* object = get_mutex_info(mutex);
|
|
remove_most_recently_locked(object);
|
|
mutex_unlock_checked(object);
|
|
}
|