android_bionic/tests/malloc_test.cpp

1731 lines
53 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <elf.h>
#include <limits.h>
#include <malloc.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/auxv.h>
#include <sys/cdefs.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <functional>
#include <string>
#include <thread>
#include <unordered_map>
#include <utility>
#include <vector>
#include <tinyxml2.h>
#include <android-base/file.h>
#include <android-base/test_utils.h>
#include "utils.h"
#if defined(__BIONIC__)
#include "SignalUtils.h"
#include "dlext_private.h"
#include "platform/bionic/malloc.h"
#include "platform/bionic/mte.h"
#include "platform/bionic/reserved_signals.h"
#include "private/bionic_config.h"
#define HAVE_REALLOCARRAY 1
#elif defined(__GLIBC__)
#define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26)
#elif defined(ANDROID_HOST_MUSL)
#define HAVE_REALLOCARRAY 1
#endif
TEST(malloc, malloc_std) {
// Simple malloc test.
void *ptr = malloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
free(ptr);
}
TEST(malloc, malloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, malloc(SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_std) {
// Simple calloc test.
size_t alloc_len = 100;
char *ptr = (char *)calloc(1, alloc_len);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(alloc_len, malloc_usable_size(ptr));
for (size_t i = 0; i < alloc_len; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_mem_init_disabled) {
#if defined(__BIONIC__)
// calloc should still zero memory if mem-init is disabled.
// With jemalloc the mallopts will fail but that shouldn't affect the
// execution of the test.
mallopt(M_THREAD_DISABLE_MEM_INIT, 1);
size_t alloc_len = 100;
char *ptr = reinterpret_cast<char*>(calloc(1, alloc_len));
for (size_t i = 0; i < alloc_len; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
mallopt(M_THREAD_DISABLE_MEM_INIT, 0);
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(malloc, calloc_illegal) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, calloc(-1, 100));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, calloc(1, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(2, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, memalign_multiple) {
SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment";
// Memalign test where the alignment is any value.
for (size_t i = 0; i <= 12; i++) {
for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment;
ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
<< "Failed at alignment " << alignment;
free(ptr);
}
}
}
TEST(malloc, memalign_overflow) {
SKIP_WITH_HWASAN;
ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX));
}
TEST(malloc, memalign_non_power2) {
SKIP_WITH_HWASAN;
void* ptr;
for (size_t align = 0; align <= 256; align++) {
ptr = memalign(align, 1024);
ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align;
free(ptr);
}
}
TEST(malloc, memalign_realloc) {
// Memalign and then realloc the pointer a couple of times.
for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
char *ptr = (char*)memalign(alignment, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
ASSERT_EQ(0U, (intptr_t)ptr % alignment);
memset(ptr, 0x23, 100);
ptr = (char*)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ASSERT_TRUE(ptr != nullptr);
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x45, 200);
ptr = (char*)realloc(ptr, 300);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(300U, malloc_usable_size(ptr));
for (size_t i = 0; i < 200; i++) {
ASSERT_EQ(0x45, ptr[i]);
}
memset(ptr, 0x67, 300);
ptr = (char*)realloc(ptr, 250);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(250U, malloc_usable_size(ptr));
for (size_t i = 0; i < 250; i++) {
ASSERT_EQ(0x67, ptr[i]);
}
free(ptr);
}
}
TEST(malloc, malloc_realloc_larger) {
// Realloc to a larger size, malloc is used for the original allocation.
char *ptr = (char *)malloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
memset(ptr, 67, 100);
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_realloc_smaller) {
// Realloc to a smaller size, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 67, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_multiple_realloc) {
// Multiple reallocs, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 0x23, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x23, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_larger) {
// Realloc to a larger size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_smaller) {
// Realloc to a smaller size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_multiple_realloc) {
// Multiple reallocs, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
memset(ptr, 0, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, realloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
void* ptr = malloc(100);
ASSERT_TRUE(ptr != nullptr);
errno = 0;
ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
free(ptr);
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* pvalloc(size_t);
extern "C" void* valloc(size_t);
#endif
TEST(malloc, pvalloc_std) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = pvalloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
ASSERT_LE(pagesize, malloc_usable_size(ptr));
free(ptr);
#else
GTEST_SKIP() << "pvalloc not supported.";
#endif
}
TEST(malloc, pvalloc_overflow) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
ASSERT_EQ(nullptr, pvalloc(SIZE_MAX));
#else
GTEST_SKIP() << "pvalloc not supported.";
#endif
}
TEST(malloc, valloc_std) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = valloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
free(ptr);
#else
GTEST_SKIP() << "valloc not supported.";
#endif
}
TEST(malloc, valloc_overflow) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
ASSERT_EQ(nullptr, valloc(SIZE_MAX));
#else
GTEST_SKIP() << "valloc not supported.";
#endif
}
TEST(malloc, malloc_info) {
#ifdef __BIONIC__
SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
FILE* fp = fdopen(tf.fd, "w+");
tf.release();
ASSERT_TRUE(fp != nullptr);
ASSERT_EQ(0, malloc_info(0, fp));
ASSERT_EQ(0, fclose(fp));
std::string contents;
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
tinyxml2::XMLDocument doc;
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
auto root = doc.FirstChildElement();
ASSERT_NE(nullptr, root);
ASSERT_STREQ("malloc", root->Name());
std::string version(root->Attribute("version"));
if (version == "jemalloc-1") {
auto arena = root->FirstChildElement();
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
int val;
ASSERT_STREQ("heap", arena->Name());
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("bins-total")->QueryIntText(&val));
auto bin = arena->FirstChildElement("bin");
for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
if (strcmp(bin->Name(), "bin") == 0) {
ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("allocated")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("nmalloc")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("ndalloc")->QueryIntText(&val));
}
}
}
} else if (version == "scudo-1") {
auto element = root->FirstChildElement();
for (; element != nullptr; element = element->NextSiblingElement()) {
int val;
ASSERT_STREQ("alloc", element->Name());
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val));
}
} else {
// Do not verify output for debug malloc.
ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
}
#endif
}
TEST(malloc, malloc_info_matches_mallinfo) {
#ifdef __BIONIC__
SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
FILE* fp = fdopen(tf.fd, "w+");
tf.release();
ASSERT_TRUE(fp != nullptr);
size_t mallinfo_before_allocated_bytes = mallinfo().uordblks;
ASSERT_EQ(0, malloc_info(0, fp));
size_t mallinfo_after_allocated_bytes = mallinfo().uordblks;
ASSERT_EQ(0, fclose(fp));
std::string contents;
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
tinyxml2::XMLDocument doc;
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
size_t total_allocated_bytes = 0;
auto root = doc.FirstChildElement();
ASSERT_NE(nullptr, root);
ASSERT_STREQ("malloc", root->Name());
std::string version(root->Attribute("version"));
if (version == "jemalloc-1") {
auto arena = root->FirstChildElement();
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
int val;
ASSERT_STREQ("heap", arena->Name());
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
total_allocated_bytes += val;
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
total_allocated_bytes += val;
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
total_allocated_bytes += val;
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("bins-total")->QueryIntText(&val));
}
// The total needs to be between the mallinfo call before and after
// since malloc_info allocates some memory.
EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes);
EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes);
} else if (version == "scudo-1") {
auto element = root->FirstChildElement();
for (; element != nullptr; element = element->NextSiblingElement()) {
ASSERT_STREQ("alloc", element->Name());
int size;
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size));
int count;
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count));
total_allocated_bytes += size * count;
}
// Scudo only gives the information on the primary, so simply make
// sure that the value is non-zero.
EXPECT_NE(0U, total_allocated_bytes);
} else {
// Do not verify output for debug malloc.
ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
}
#endif
}
TEST(malloc, calloc_usable_size) {
for (size_t size = 1; size <= 2048; size++) {
void* pointer = malloc(size);
ASSERT_TRUE(pointer != nullptr);
memset(pointer, 0xeb, malloc_usable_size(pointer));
free(pointer);
// We should get a previous pointer that has been set to non-zero.
// If calloc does not zero out all of the data, this will fail.
uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
ASSERT_TRUE(pointer != nullptr);
size_t usable_size = malloc_usable_size(zero_mem);
for (size_t i = 0; i < usable_size; i++) {
ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
}
free(zero_mem);
}
}
TEST(malloc, malloc_0) {
void* p = malloc(0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_0_0) {
void* p = calloc(0, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_0_1) {
void* p = calloc(0, 1);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_1_0) {
void* p = calloc(1, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, realloc_nullptr_0) {
// realloc(nullptr, size) is actually malloc(size).
void* p = realloc(nullptr, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, realloc_0) {
void* p = malloc(1024);
ASSERT_TRUE(p != nullptr);
// realloc(p, 0) is actually free(p).
void* p2 = realloc(p, 0);
ASSERT_TRUE(p2 == nullptr);
}
constexpr size_t MAX_LOOPS = 200;
// Make sure that memory returned by malloc is aligned to allow these data types.
TEST(malloc, verify_alignment) {
uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
long double** values_ldouble = new long double*[MAX_LOOPS];
// Use filler to attempt to force the allocator to get potentially bad alignments.
void** filler = new void*[MAX_LOOPS];
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check uint32_t pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
ASSERT_TRUE(values_32[i] != nullptr);
*values_32[i] = i;
ASSERT_EQ(*values_32[i], i);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check uint64_t pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
ASSERT_TRUE(values_64[i] != nullptr);
*values_64[i] = 0x1000 + i;
ASSERT_EQ(*values_64[i], 0x1000 + i);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check long double pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
ASSERT_TRUE(values_ldouble[i] != nullptr);
*values_ldouble[i] = 5.5 + i;
ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
// 32 bit glibc has a long double size of 12 bytes, so hardcode the
// required alignment to 0x7.
#if !defined(__BIONIC__) && !defined(__LP64__)
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
#else
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
#endif
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
free(values_32[i]);
free(values_64[i]);
free(values_ldouble[i]);
}
delete[] filler;
delete[] values_32;
delete[] values_64;
delete[] values_ldouble;
}
TEST(malloc, mallopt_smoke) {
#if defined(__BIONIC__)
errno = 0;
ASSERT_EQ(0, mallopt(-1000, 1));
// mallopt doesn't set errno.
ASSERT_EQ(0, errno);
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(malloc, mallopt_decay) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
errno = 0;
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(malloc, mallopt_purge) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
errno = 0;
ASSERT_EQ(1, mallopt(M_PURGE, 0));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(malloc, mallopt_purge_all) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
errno = 0;
ASSERT_EQ(1, mallopt(M_PURGE_ALL, 0));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
// Verify that all of the mallopt values are unique.
TEST(malloc, mallopt_unique_params) {
#if defined(__BIONIC__)
std::vector<std::pair<int, std::string>> params{
std::make_pair(M_DECAY_TIME, "M_DECAY_TIME"),
std::make_pair(M_PURGE, "M_PURGE"),
std::make_pair(M_PURGE_ALL, "M_PURGE_ALL"),
std::make_pair(M_MEMTAG_TUNING, "M_MEMTAG_TUNING"),
std::make_pair(M_THREAD_DISABLE_MEM_INIT, "M_THREAD_DISABLE_MEM_INIT"),
std::make_pair(M_CACHE_COUNT_MAX, "M_CACHE_COUNT_MAX"),
std::make_pair(M_CACHE_SIZE_MAX, "M_CACHE_SIZE_MAX"),
std::make_pair(M_TSDS_COUNT_MAX, "M_TSDS_COUNT_MAX"),
std::make_pair(M_BIONIC_ZERO_INIT, "M_BIONIC_ZERO_INIT"),
std::make_pair(M_BIONIC_SET_HEAP_TAGGING_LEVEL, "M_BIONIC_SET_HEAP_TAGGING_LEVEL"),
};
std::unordered_map<int, std::string> all_params;
for (const auto& param : params) {
EXPECT_TRUE(all_params.count(param.first) == 0)
<< "mallopt params " << all_params[param.first] << " and " << param.second
<< " have the same value " << param.first;
all_params.insert(param);
}
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
#if defined(__BIONIC__)
static void GetAllocatorVersion(bool* allocator_scudo) {
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
FILE* fp = fdopen(tf.fd, "w+");
tf.release();
ASSERT_TRUE(fp != nullptr);
if (malloc_info(0, fp) != 0) {
*allocator_scudo = false;
return;
}
ASSERT_EQ(0, fclose(fp));
std::string contents;
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
tinyxml2::XMLDocument doc;
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
auto root = doc.FirstChildElement();
ASSERT_NE(nullptr, root);
ASSERT_STREQ("malloc", root->Name());
std::string version(root->Attribute("version"));
*allocator_scudo = (version == "scudo-1");
}
#endif
TEST(malloc, mallopt_scudo_only_options) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
bool allocator_scudo;
GetAllocatorVersion(&allocator_scudo);
if (!allocator_scudo) {
GTEST_SKIP() << "scudo allocator only test";
}
ASSERT_EQ(1, mallopt(M_CACHE_COUNT_MAX, 100));
ASSERT_EQ(1, mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2));
ASSERT_EQ(1, mallopt(M_TSDS_COUNT_MAX, 8));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(malloc, reallocarray_overflow) {
#if HAVE_REALLOCARRAY
// Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed".
size_t a = static_cast<size_t>(INTPTR_MIN + 4);
size_t b = 2;
errno = 0;
ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr);
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr);
ASSERT_EQ(ENOMEM, errno);
#else
GTEST_SKIP() << "reallocarray not available";
#endif
}
TEST(malloc, reallocarray) {
#if HAVE_REALLOCARRAY
void* p = reallocarray(nullptr, 2, 32);
ASSERT_TRUE(p != nullptr);
ASSERT_GE(malloc_usable_size(p), 64U);
#else
GTEST_SKIP() << "reallocarray not available";
#endif
}
TEST(malloc, mallinfo) {
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
SKIP_WITH_HWASAN << "hwasan does not implement mallinfo";
static size_t sizes[] = {
8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000
};
constexpr static size_t kMaxAllocs = 50;
for (size_t size : sizes) {
// If some of these allocations are stuck in a thread cache, then keep
// looping until we make an allocation that changes the total size of the
// memory allocated.
// jemalloc implementations counts the thread cache allocations against
// total memory allocated.
void* ptrs[kMaxAllocs] = {};
bool pass = false;
for (size_t i = 0; i < kMaxAllocs; i++) {
size_t allocated = mallinfo().uordblks;
ptrs[i] = malloc(size);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t new_allocated = mallinfo().uordblks;
if (allocated != new_allocated) {
size_t usable_size = malloc_usable_size(ptrs[i]);
// Only check if the total got bigger by at least allocation size.
// Sometimes the mallinfo numbers can go backwards due to compaction
// and/or freeing of cached data.
if (new_allocated >= allocated + usable_size) {
pass = true;
break;
}
}
}
for (void* ptr : ptrs) {
free(ptr);
}
ASSERT_TRUE(pass)
<< "For size " << size << " allocated bytes did not increase after "
<< kMaxAllocs << " allocations.";
}
#else
GTEST_SKIP() << "glibc is broken";
#endif
}
TEST(malloc, mallinfo2) {
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
SKIP_WITH_HWASAN << "hwasan does not implement mallinfo2";
static size_t sizes[] = {8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000};
constexpr static size_t kMaxAllocs = 50;
for (size_t size : sizes) {
// If some of these allocations are stuck in a thread cache, then keep
// looping until we make an allocation that changes the total size of the
// memory allocated.
// jemalloc implementations counts the thread cache allocations against
// total memory allocated.
void* ptrs[kMaxAllocs] = {};
bool pass = false;
for (size_t i = 0; i < kMaxAllocs; i++) {
struct mallinfo info = mallinfo();
struct mallinfo2 info2 = mallinfo2();
// Verify that mallinfo and mallinfo2 are exactly the same.
ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
size_t allocated = info2.uordblks;
ptrs[i] = malloc(size);
ASSERT_TRUE(ptrs[i] != nullptr);
info = mallinfo();
info2 = mallinfo2();
// Verify that mallinfo and mallinfo2 are exactly the same.
ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
size_t new_allocated = info2.uordblks;
if (allocated != new_allocated) {
size_t usable_size = malloc_usable_size(ptrs[i]);
// Only check if the total got bigger by at least allocation size.
// Sometimes the mallinfo2 numbers can go backwards due to compaction
// and/or freeing of cached data.
if (new_allocated >= allocated + usable_size) {
pass = true;
break;
}
}
}
for (void* ptr : ptrs) {
free(ptr);
}
ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after "
<< kMaxAllocs << " allocations.";
}
#else
GTEST_SKIP() << "glibc is broken";
#endif
}
template <typename Type>
void __attribute__((optnone)) VerifyAlignment(Type* floating) {
size_t expected_alignment = alignof(Type);
if (expected_alignment != 0) {
ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast<uintptr_t>(floating))
<< "Expected alignment " << expected_alignment << " ptr value " << floating;
}
}
template <typename Type>
void __attribute__((optnone)) TestAllocateType() {
// The number of allocations to do in a row. This is to attempt to
// expose the worst case alignment for native allocators that use
// bins.
static constexpr size_t kMaxConsecutiveAllocs = 100;
// Verify using new directly.
Type* types[kMaxConsecutiveAllocs];
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
types[i] = new Type;
VerifyAlignment(types[i]);
if (::testing::Test::HasFatalFailure()) {
return;
}
}
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
delete types[i];
}
// Verify using malloc.
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
types[i] = reinterpret_cast<Type*>(malloc(sizeof(Type)));
ASSERT_TRUE(types[i] != nullptr);
VerifyAlignment(types[i]);
if (::testing::Test::HasFatalFailure()) {
return;
}
}
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
free(types[i]);
}
// Verify using a vector.
std::vector<Type> type_vector(kMaxConsecutiveAllocs);
for (size_t i = 0; i < type_vector.size(); i++) {
VerifyAlignment(&type_vector[i]);
if (::testing::Test::HasFatalFailure()) {
return;
}
}
}
#if defined(__ANDROID__)
static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) {
void* ptrs[100];
uintptr_t mask = aligned_bytes - 1;
for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
ptrs[i] = malloc(alloc_size);
ASSERT_TRUE(ptrs[i] != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptrs[i]) & mask)
<< "Expected at least " << aligned_bytes << " byte alignment: size "
<< alloc_size << " actual ptr " << ptrs[i];
}
}
#endif
void AlignCheck() {
// See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445
// for a discussion of type alignment.
ASSERT_NO_FATAL_FAILURE(TestAllocateType<float>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<double>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long double>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char16_t>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char32_t>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<wchar_t>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<signed char>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<short int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long long int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned char>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned short int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long int>());
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long long int>());
#if defined(__ANDROID__)
// On Android, there is a lot of code that expects certain alignments:
// 1. Allocations of a size that rounds up to a multiple of 16 bytes
// must have at least 16 byte alignment.
// 2. Allocations of a size that rounds up to a multiple of 8 bytes and
// not 16 bytes, are only required to have at least 8 byte alignment.
// In addition, on Android clang has been configured for 64 bit such that:
// 3. Allocations <= 8 bytes must be aligned to at least 8 bytes.
// 4. Allocations > 8 bytes must be aligned to at least 16 bytes.
// For 32 bit environments, only the first two requirements must be met.
// See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for
// a discussion of this alignment mess. The code below is enforcing
// strong-alignment, since who knows what code depends on this behavior now.
// As mentioned before, for 64 bit this will enforce the higher
// requirement since clang expects this behavior on Android now.
for (size_t i = 1; i <= 128; i++) {
#if defined(__LP64__)
if (i <= 8) {
AndroidVerifyAlignment(i, 8);
} else {
AndroidVerifyAlignment(i, 16);
}
#else
size_t rounded = (i + 7) & ~7;
if ((rounded % 16) == 0) {
AndroidVerifyAlignment(i, 16);
} else {
AndroidVerifyAlignment(i, 8);
}
#endif
if (::testing::Test::HasFatalFailure()) {
return;
}
}
#endif
}
TEST(malloc, align_check) {
AlignCheck();
}
// Jemalloc doesn't pass this test right now, so leave it as disabled.
TEST(malloc, DISABLED_alloc_after_fork) {
// Both of these need to be a power of 2.
static constexpr size_t kMinAllocationSize = 8;
static constexpr size_t kMaxAllocationSize = 2097152;
static constexpr size_t kNumAllocatingThreads = 5;
static constexpr size_t kNumForkLoops = 100;
std::atomic_bool stop;
// Create threads that simply allocate and free different sizes.
std::vector<std::thread*> threads;
for (size_t i = 0; i < kNumAllocatingThreads; i++) {
std::thread* t = new std::thread([&stop] {
while (!stop) {
for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
void* ptr;
DoNotOptimize(ptr = malloc(size));
free(ptr);
}
}
});
threads.push_back(t);
}
// Create a thread to fork and allocate.
for (size_t i = 0; i < kNumForkLoops; i++) {
pid_t pid;
if ((pid = fork()) == 0) {
for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
void* ptr;
DoNotOptimize(ptr = malloc(size));
ASSERT_TRUE(ptr != nullptr);
// Make sure we can touch all of the allocation.
memset(ptr, 0x1, size);
ASSERT_LE(size, malloc_usable_size(ptr));
free(ptr);
}
_exit(10);
}
ASSERT_NE(-1, pid);
AssertChildExited(pid, 10);
}
stop = true;
for (auto thread : threads) {
thread->join();
delete thread;
}
}
TEST(android_mallopt, error_on_unexpected_option) {
#if defined(__BIONIC__)
const int unrecognized_option = -1;
errno = 0;
EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0));
EXPECT_EQ(ENOTSUP, errno);
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
bool IsDynamic() {
#if defined(__LP64__)
Elf64_Ehdr ehdr;
#else
Elf32_Ehdr ehdr;
#endif
std::string path(android::base::GetExecutablePath());
int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
if (fd == -1) {
// Assume dynamic on error.
return true;
}
bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr));
close(fd);
// Assume dynamic in error cases.
return !read_completed || ehdr.e_type == ET_DYN;
}
TEST(android_mallopt, init_zygote_child_profiling) {
#if defined(__BIONIC__)
// Successful call.
errno = 0;
if (IsDynamic()) {
EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
EXPECT_EQ(0, errno);
} else {
// Not supported in static executables.
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
EXPECT_EQ(ENOTSUP, errno);
}
// Unexpected arguments rejected.
errno = 0;
char unexpected = 0;
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1));
if (IsDynamic()) {
EXPECT_EQ(EINVAL, errno);
} else {
EXPECT_EQ(ENOTSUP, errno);
}
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
#if defined(__BIONIC__)
template <typename FuncType>
void CheckAllocationFunction(FuncType func) {
// Assumes that no more than 108MB of memory is allocated before this.
size_t limit = 128 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
if (!func(20 * 1024 * 1024))
exit(1);
if (func(128 * 1024 * 1024))
exit(1);
exit(0);
}
#endif
TEST(android_mallopt, set_allocation_limit) {
#if defined(__BIONIC__)
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction(
[](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
void* ptr;
return posix_memalign(&ptr, sizeof(void *), bytes) == 0;
}),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction(
[](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
void* p = malloc(1024 * 1024);
return realloc(p, bytes) != nullptr;
}),
testing::ExitedWithCode(0), "");
#if !defined(__LP64__)
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }),
testing::ExitedWithCode(0), "");
#endif
#else
GTEST_SKIP() << "bionic extension";
#endif
}
TEST(android_mallopt, set_allocation_limit_multiple) {
#if defined(__BIONIC__)
// Only the first set should work.
size_t limit = 256 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
limit = 32 * 1024 * 1024;
ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
#else
GTEST_SKIP() << "bionic extension";
#endif
}
#if defined(__BIONIC__)
static constexpr size_t kAllocationSize = 8 * 1024 * 1024;
static size_t GetMaxAllocations() {
size_t max_pointers = 0;
void* ptrs[20];
for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
ptrs[i] = malloc(kAllocationSize);
if (ptrs[i] == nullptr) {
max_pointers = i;
break;
}
}
for (size_t i = 0; i < max_pointers; i++) {
free(ptrs[i]);
}
return max_pointers;
}
static void VerifyMaxPointers(size_t max_pointers) {
// Now verify that we can allocate the same number as before.
void* ptrs[20];
for (size_t i = 0; i < max_pointers; i++) {
ptrs[i] = malloc(kAllocationSize);
ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i;
}
// Make sure the next allocation still fails.
ASSERT_TRUE(malloc(kAllocationSize) == nullptr);
for (size_t i = 0; i < max_pointers; i++) {
free(ptrs[i]);
}
}
#endif
TEST(android_mallopt, set_allocation_limit_realloc_increase) {
#if defined(__BIONIC__)
size_t limit = 128 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
size_t max_pointers = GetMaxAllocations();
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
void* memory = malloc(10 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
// Increase size.
memory = realloc(memory, 20 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 40 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 60 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 80 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
// Now push past limit.
memory = realloc(memory, 130 * 1024 * 1024);
ASSERT_TRUE(memory == nullptr);
VerifyMaxPointers(max_pointers);
#else
GTEST_SKIP() << "bionic extension";
#endif
}
TEST(android_mallopt, set_allocation_limit_realloc_decrease) {
#if defined(__BIONIC__)
size_t limit = 100 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
size_t max_pointers = GetMaxAllocations();
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
void* memory = malloc(80 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
// Decrease size.
memory = realloc(memory, 60 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 40 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 20 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 10 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
free(memory);
VerifyMaxPointers(max_pointers);
#else
GTEST_SKIP() << "bionic extension";
#endif
}
TEST(android_mallopt, set_allocation_limit_realloc_free) {
#if defined(__BIONIC__)
size_t limit = 100 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
size_t max_pointers = GetMaxAllocations();
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
void* memory = malloc(60 * 1024 * 1024);
ASSERT_TRUE(memory != nullptr);
memory = realloc(memory, 0);
ASSERT_TRUE(memory == nullptr);
VerifyMaxPointers(max_pointers);
#else
GTEST_SKIP() << "bionic extension";
#endif
}
#if defined(__BIONIC__)
static void* SetAllocationLimit(void* data) {
std::atomic_bool* go = reinterpret_cast<std::atomic_bool*>(data);
while (!go->load()) {
}
size_t limit = 500 * 1024 * 1024;
if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) {
return reinterpret_cast<void*>(-1);
}
return nullptr;
}
static void SetAllocationLimitMultipleThreads() {
std::atomic_bool go;
go = false;
static constexpr size_t kNumThreads = 4;
pthread_t threads[kNumThreads];
for (size_t i = 0; i < kNumThreads; i++) {
ASSERT_EQ(0, pthread_create(&threads[i], nullptr, SetAllocationLimit, &go));
}
// Let them go all at once.
go = true;
// Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger
// heapprofd handler.
union sigval signal_value;
signal_value.sival_int = 0;
ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value));
size_t num_successful = 0;
for (size_t i = 0; i < kNumThreads; i++) {
void* result;
ASSERT_EQ(0, pthread_join(threads[i], &result));
if (result != nullptr) {
num_successful++;
}
}
ASSERT_EQ(1U, num_successful);
exit(0);
}
#endif
TEST(android_mallopt, set_allocation_limit_multiple_threads) {
#if defined(__BIONIC__)
if (IsDynamic()) {
ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
}
// Run this a number of times as a stress test.
for (size_t i = 0; i < 100; i++) {
// Not using ASSERT_EXIT because errors messages are not displayed.
pid_t pid;
if ((pid = fork()) == 0) {
ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads());
}
ASSERT_NE(-1, pid);
int status;
ASSERT_EQ(pid, wait(&status));
ASSERT_EQ(0, WEXITSTATUS(status));
}
#else
GTEST_SKIP() << "bionic extension";
#endif
}
#if defined(__BIONIC__)
using Action = android_mallopt_gwp_asan_options_t::Action;
TEST(android_mallopt, DISABLED_multiple_enable_gwp_asan) {
android_mallopt_gwp_asan_options_t options;
options.program_name = ""; // Don't infer GWP-ASan options from sysprops.
options.desire = Action::DONT_TURN_ON_UNLESS_OVERRIDDEN;
// GWP-ASan should already be enabled. Trying to enable or disable it should
// always pass.
ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
options.desire = Action::TURN_ON_WITH_SAMPLING;
ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
}
#endif // defined(__BIONIC__)
TEST(android_mallopt, multiple_enable_gwp_asan) {
#if defined(__BIONIC__)
// Always enable GWP-Asan, with default options.
RunGwpAsanTest("*.DISABLED_multiple_enable_gwp_asan");
#else
GTEST_SKIP() << "bionic extension";
#endif
}
TEST(android_mallopt, memtag_stack_is_on) {
#if defined(__BIONIC__)
bool memtag_stack;
EXPECT_TRUE(android_mallopt(M_MEMTAG_STACK_IS_ON, &memtag_stack, sizeof(memtag_stack)));
#else
GTEST_SKIP() << "bionic extension";
#endif
}
void TestHeapZeroing(int num_iterations, int (*get_alloc_size)(int iteration)) {
std::vector<void*> allocs;
constexpr int kMaxBytesToCheckZero = 64;
const char kBlankMemory[kMaxBytesToCheckZero] = {};
for (int i = 0; i < num_iterations; ++i) {
int size = get_alloc_size(i);
allocs.push_back(malloc(size));
memset(allocs.back(), 'X', std::min(size, kMaxBytesToCheckZero));
}
for (void* alloc : allocs) {
free(alloc);
}
allocs.clear();
for (int i = 0; i < num_iterations; ++i) {
int size = get_alloc_size(i);
allocs.push_back(malloc(size));
ASSERT_EQ(0, memcmp(allocs.back(), kBlankMemory, std::min(size, kMaxBytesToCheckZero)));
}
for (void* alloc : allocs) {
free(alloc);
}
}
TEST(malloc, zero_init) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
bool allocator_scudo;
GetAllocatorVersion(&allocator_scudo);
if (!allocator_scudo) {
GTEST_SKIP() << "scudo allocator only test";
}
mallopt(M_BIONIC_ZERO_INIT, 1);
// Test using a block of 4K small (1-32 byte) allocations.
TestHeapZeroing(/* num_iterations */ 0x1000, [](int iteration) -> int {
return 1 + iteration % 32;
});
// Also test large allocations that land in the scudo secondary, as this is
// the only part of Scudo that's changed by enabling zero initialization with
// MTE. Uses 32 allocations, totalling 60MiB memory. Decay time (time to
// release secondary allocations back to the OS) was modified to 0ms/1ms by
// mallopt_decay. Ensure that we delay for at least a second before releasing
// pages to the OS in order to avoid implicit zeroing by the kernel.
mallopt(M_DECAY_TIME, 1000);
TestHeapZeroing(/* num_iterations */ 32, [](int iteration) -> int {
return 1 << (19 + iteration % 4);
});
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
// Note that MTE is enabled on cc_tests on devices that support MTE.
TEST(malloc, disable_mte) {
#if defined(__BIONIC__)
if (!mte_supported()) {
GTEST_SKIP() << "This function can only be tested with MTE";
}
sem_t sem;
ASSERT_EQ(0, sem_init(&sem, 0, 0));
pthread_t thread;
ASSERT_EQ(0, pthread_create(
&thread, nullptr,
[](void* ptr) -> void* {
auto* sem = reinterpret_cast<sem_t*>(ptr);
sem_wait(sem);
return reinterpret_cast<void*>(prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
},
&sem));
ASSERT_EQ(1, mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_NONE));
ASSERT_EQ(0, sem_post(&sem));
int my_tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
ASSERT_EQ(static_cast<unsigned long>(PR_MTE_TCF_NONE), my_tagged_addr_ctrl & PR_MTE_TCF_MASK);
void* retval;
ASSERT_EQ(0, pthread_join(thread, &retval));
int thread_tagged_addr_ctrl = reinterpret_cast<uintptr_t>(retval);
ASSERT_EQ(my_tagged_addr_ctrl, thread_tagged_addr_ctrl);
#else
GTEST_SKIP() << "bionic extension";
#endif
}
TEST(malloc, allocation_slack) {
#if defined(__BIONIC__)
SKIP_WITH_NATIVE_BRIDGE; // http://b/189606147
bool allocator_scudo;
GetAllocatorVersion(&allocator_scudo);
if (!allocator_scudo) {
GTEST_SKIP() << "scudo allocator only test";
}
// Test that older target SDK levels let you access a few bytes off the end of
// a large allocation.
android_set_application_target_sdk_version(29);
auto p = std::make_unique<char[]>(131072);
volatile char *vp = p.get();
volatile char oob ATTRIBUTE_UNUSED = vp[131072];
#else
GTEST_SKIP() << "bionic extension";
#endif
}
// Regression test for b/206701345 -- scudo bug, MTE only.
// Fix: https://reviews.llvm.org/D105261
// Fix: https://android-review.googlesource.com/c/platform/external/scudo/+/1763655
TEST(malloc, realloc_mte_crash_b206701345) {
// We want to hit in-place realloc at the very end of an mmap-ed region. Not
// all size classes allow such placement - mmap size has to be divisible by
// the block size. At the time of writing this could only be reproduced with
// 64 byte size class (i.e. 48 byte allocations), but that may change in the
// future. Try several different classes at the lower end.
std::vector<void*> ptrs(10000);
for (int i = 1; i < 32; ++i) {
size_t sz = 16 * i - 1;
for (void*& p : ptrs) {
p = realloc(malloc(sz), sz + 1);
}
for (void* p : ptrs) {
free(p);
}
}
}
void VerifyAllocationsAreZero(std::function<void*(size_t)> alloc_func, std::string function_name,
std::vector<size_t>& test_sizes, size_t max_allocations) {
// Vector of zero'd data used for comparisons. Make it twice the largest size.
std::vector<char> zero(test_sizes.back() * 2, 0);
SCOPED_TRACE(testing::Message() << function_name << " failed to zero memory");
for (size_t test_size : test_sizes) {
std::vector<void*> ptrs(max_allocations);
for (size_t i = 0; i < ptrs.size(); i++) {
SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
ptrs[i] = alloc_func(test_size);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t alloc_size = malloc_usable_size(ptrs[i]);
ASSERT_LE(alloc_size, zero.size());
ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
// Set the memory to non-zero to make sure if the pointer
// is reused it's still zero.
memset(ptrs[i], 0xab, alloc_size);
}
// Free the pointers.
for (size_t i = 0; i < ptrs.size(); i++) {
free(ptrs[i]);
}
for (size_t i = 0; i < ptrs.size(); i++) {
SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
ptrs[i] = malloc(test_size);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t alloc_size = malloc_usable_size(ptrs[i]);
ASSERT_LE(alloc_size, zero.size());
ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
}
// Free all of the pointers later to maximize the chance of reusing from
// the first loop.
for (size_t i = 0; i < ptrs.size(); i++) {
free(ptrs[i]);
}
}
}
// Verify that small and medium allocations are always zero.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_small_medium_sizes) {
#if !defined(__BIONIC__)
GTEST_SKIP() << "Only valid on bionic";
#endif
if (IsLowRamDevice()) {
GTEST_SKIP() << "Skipped on low memory devices.";
}
constexpr size_t kMaxAllocations = 1024;
std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
kMaxAllocations);
VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
test_sizes, kMaxAllocations);
VerifyAllocationsAreZero(
[](size_t size) -> void* {
void* ptr;
if (posix_memalign(&ptr, 64, size) == 0) {
return ptr;
}
return nullptr;
},
"posix_memalign", test_sizes, kMaxAllocations);
}
// Verify that large allocations are always zero.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_large_sizes) {
#if !defined(__BIONIC__)
GTEST_SKIP() << "Only valid on bionic";
#endif
if (IsLowRamDevice()) {
GTEST_SKIP() << "Skipped on low memory devices.";
}
constexpr size_t kMaxAllocations = 20;
std::vector<size_t> test_sizes = {1000000, 2000000, 3000000, 4000000};
VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
kMaxAllocations);
VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
test_sizes, kMaxAllocations);
VerifyAllocationsAreZero(
[](size_t size) -> void* {
void* ptr;
if (posix_memalign(&ptr, 64, size) == 0) {
return ptr;
}
return nullptr;
},
"posix_memalign", test_sizes, kMaxAllocations);
}
// Verify that reallocs are zeroed when expanded.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_realloc) {
#if !defined(__BIONIC__)
GTEST_SKIP() << "Only valid on bionic";
#endif
if (IsLowRamDevice()) {
GTEST_SKIP() << "Skipped on low memory devices.";
}
// Vector of zero'd data used for comparisons.
constexpr size_t kMaxMemorySize = 131072;
std::vector<char> zero(kMaxMemorySize, 0);
constexpr size_t kMaxAllocations = 1024;
std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
// Do a number of allocations and set them to non-zero.
for (size_t test_size : test_sizes) {
std::vector<void*> ptrs(kMaxAllocations);
for (size_t i = 0; i < kMaxAllocations; i++) {
ptrs[i] = malloc(test_size);
ASSERT_TRUE(ptrs[i] != nullptr);
// Set the memory to non-zero to make sure if the pointer
// is reused it's still zero.
memset(ptrs[i], 0xab, malloc_usable_size(ptrs[i]));
}
// Free the pointers.
for (size_t i = 0; i < kMaxAllocations; i++) {
free(ptrs[i]);
}
}
// Do the reallocs to a larger size and verify the rest of the allocation
// is zero.
constexpr size_t kInitialSize = 8;
for (size_t test_size : test_sizes) {
std::vector<void*> ptrs(kMaxAllocations);
for (size_t i = 0; i < kMaxAllocations; i++) {
ptrs[i] = malloc(kInitialSize);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t orig_alloc_size = malloc_usable_size(ptrs[i]);
ptrs[i] = realloc(ptrs[i], test_size);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t new_alloc_size = malloc_usable_size(ptrs[i]);
char* ptr = reinterpret_cast<char*>(ptrs[i]);
ASSERT_EQ(0, memcmp(&ptr[orig_alloc_size], zero.data(), new_alloc_size - orig_alloc_size))
<< "realloc from " << kInitialSize << " to size " << test_size << " at iteration " << i;
}
for (size_t i = 0; i < kMaxAllocations; i++) {
free(ptrs[i]);
}
}
}