1731 lines
53 KiB
C++
1731 lines
53 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <elf.h>
|
|
#include <limits.h>
|
|
#include <malloc.h>
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/auxv.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <functional>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <tinyxml2.h>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/test_utils.h>
|
|
|
|
#include "utils.h"
|
|
|
|
#if defined(__BIONIC__)
|
|
|
|
#include "SignalUtils.h"
|
|
#include "dlext_private.h"
|
|
|
|
#include "platform/bionic/malloc.h"
|
|
#include "platform/bionic/mte.h"
|
|
#include "platform/bionic/reserved_signals.h"
|
|
#include "private/bionic_config.h"
|
|
|
|
#define HAVE_REALLOCARRAY 1
|
|
|
|
#elif defined(__GLIBC__)
|
|
|
|
#define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26)
|
|
|
|
#elif defined(ANDROID_HOST_MUSL)
|
|
|
|
#define HAVE_REALLOCARRAY 1
|
|
|
|
#endif
|
|
|
|
TEST(malloc, malloc_std) {
|
|
// Simple malloc test.
|
|
void *ptr = malloc(100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_overflow) {
|
|
SKIP_WITH_HWASAN;
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, malloc(SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, calloc_std) {
|
|
// Simple calloc test.
|
|
size_t alloc_len = 100;
|
|
char *ptr = (char *)calloc(1, alloc_len);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(alloc_len, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < alloc_len; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_mem_init_disabled) {
|
|
#if defined(__BIONIC__)
|
|
// calloc should still zero memory if mem-init is disabled.
|
|
// With jemalloc the mallopts will fail but that shouldn't affect the
|
|
// execution of the test.
|
|
mallopt(M_THREAD_DISABLE_MEM_INIT, 1);
|
|
size_t alloc_len = 100;
|
|
char *ptr = reinterpret_cast<char*>(calloc(1, alloc_len));
|
|
for (size_t i = 0; i < alloc_len; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
mallopt(M_THREAD_DISABLE_MEM_INIT, 0);
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, calloc_illegal) {
|
|
SKIP_WITH_HWASAN;
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, calloc(-1, 100));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, calloc_overflow) {
|
|
SKIP_WITH_HWASAN;
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, calloc(1, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, calloc(2, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, memalign_multiple) {
|
|
SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment";
|
|
// Memalign test where the alignment is any value.
|
|
for (size_t i = 0; i <= 12; i++) {
|
|
for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
|
|
char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
|
|
ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment;
|
|
ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
|
|
<< "Failed at alignment " << alignment;
|
|
free(ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(malloc, memalign_overflow) {
|
|
SKIP_WITH_HWASAN;
|
|
ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX));
|
|
}
|
|
|
|
TEST(malloc, memalign_non_power2) {
|
|
SKIP_WITH_HWASAN;
|
|
void* ptr;
|
|
for (size_t align = 0; align <= 256; align++) {
|
|
ptr = memalign(align, 1024);
|
|
ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align;
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, memalign_realloc) {
|
|
// Memalign and then realloc the pointer a couple of times.
|
|
for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
|
|
char *ptr = (char*)memalign(alignment, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
ASSERT_EQ(0U, (intptr_t)ptr % alignment);
|
|
memset(ptr, 0x23, 100);
|
|
|
|
ptr = (char*)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
memset(ptr, 0x45, 200);
|
|
|
|
ptr = (char*)realloc(ptr, 300);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(300U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 200; i++) {
|
|
ASSERT_EQ(0x45, ptr[i]);
|
|
}
|
|
memset(ptr, 0x67, 300);
|
|
|
|
ptr = (char*)realloc(ptr, 250);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(250U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 250; i++) {
|
|
ASSERT_EQ(0x67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, malloc_realloc_larger) {
|
|
// Realloc to a larger size, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
memset(ptr, 67, 100);
|
|
|
|
ptr = (char *)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_realloc_smaller) {
|
|
// Realloc to a smaller size, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
memset(ptr, 67, 200);
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_multiple_realloc) {
|
|
// Multiple reallocs, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
memset(ptr, 0x23, 200);
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 50);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(50U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 150);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(150U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
memset(ptr, 0x23, 150);
|
|
|
|
ptr = (char*)realloc(ptr, 425);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(425U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 150; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_realloc_larger) {
|
|
// Realloc to a larger size, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_realloc_smaller) {
|
|
// Realloc to a smaller size, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_multiple_realloc) {
|
|
// Multiple reallocs, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 200);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 50);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(50U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 150);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(150U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
memset(ptr, 0, 150);
|
|
|
|
ptr = (char*)realloc(ptr, 425);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_LE(425U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 150; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, realloc_overflow) {
|
|
SKIP_WITH_HWASAN;
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
void* ptr = malloc(100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
errno = 0;
|
|
ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
free(ptr);
|
|
}
|
|
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
extern "C" void* pvalloc(size_t);
|
|
extern "C" void* valloc(size_t);
|
|
#endif
|
|
|
|
TEST(malloc, pvalloc_std) {
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
size_t pagesize = sysconf(_SC_PAGESIZE);
|
|
void* ptr = pvalloc(100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
|
|
ASSERT_LE(pagesize, malloc_usable_size(ptr));
|
|
free(ptr);
|
|
#else
|
|
GTEST_SKIP() << "pvalloc not supported.";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, pvalloc_overflow) {
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
ASSERT_EQ(nullptr, pvalloc(SIZE_MAX));
|
|
#else
|
|
GTEST_SKIP() << "pvalloc not supported.";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, valloc_std) {
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
size_t pagesize = sysconf(_SC_PAGESIZE);
|
|
void* ptr = valloc(100);
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
|
|
free(ptr);
|
|
#else
|
|
GTEST_SKIP() << "valloc not supported.";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, valloc_overflow) {
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
ASSERT_EQ(nullptr, valloc(SIZE_MAX));
|
|
#else
|
|
GTEST_SKIP() << "valloc not supported.";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, malloc_info) {
|
|
#ifdef __BIONIC__
|
|
SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
|
|
|
|
TemporaryFile tf;
|
|
ASSERT_TRUE(tf.fd != -1);
|
|
FILE* fp = fdopen(tf.fd, "w+");
|
|
tf.release();
|
|
ASSERT_TRUE(fp != nullptr);
|
|
ASSERT_EQ(0, malloc_info(0, fp));
|
|
ASSERT_EQ(0, fclose(fp));
|
|
|
|
std::string contents;
|
|
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
|
|
|
|
tinyxml2::XMLDocument doc;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
|
|
|
|
auto root = doc.FirstChildElement();
|
|
ASSERT_NE(nullptr, root);
|
|
ASSERT_STREQ("malloc", root->Name());
|
|
std::string version(root->Attribute("version"));
|
|
if (version == "jemalloc-1") {
|
|
auto arena = root->FirstChildElement();
|
|
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
|
|
int val;
|
|
|
|
ASSERT_STREQ("heap", arena->Name());
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("bins-total")->QueryIntText(&val));
|
|
|
|
auto bin = arena->FirstChildElement("bin");
|
|
for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
|
|
if (strcmp(bin->Name(), "bin") == 0) {
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("allocated")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("nmalloc")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("ndalloc")->QueryIntText(&val));
|
|
}
|
|
}
|
|
}
|
|
} else if (version == "scudo-1") {
|
|
auto element = root->FirstChildElement();
|
|
for (; element != nullptr; element = element->NextSiblingElement()) {
|
|
int val;
|
|
|
|
ASSERT_STREQ("alloc", element->Name());
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val));
|
|
}
|
|
} else {
|
|
// Do not verify output for debug malloc.
|
|
ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, malloc_info_matches_mallinfo) {
|
|
#ifdef __BIONIC__
|
|
SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
|
|
|
|
TemporaryFile tf;
|
|
ASSERT_TRUE(tf.fd != -1);
|
|
FILE* fp = fdopen(tf.fd, "w+");
|
|
tf.release();
|
|
ASSERT_TRUE(fp != nullptr);
|
|
size_t mallinfo_before_allocated_bytes = mallinfo().uordblks;
|
|
ASSERT_EQ(0, malloc_info(0, fp));
|
|
size_t mallinfo_after_allocated_bytes = mallinfo().uordblks;
|
|
ASSERT_EQ(0, fclose(fp));
|
|
|
|
std::string contents;
|
|
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
|
|
|
|
tinyxml2::XMLDocument doc;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
|
|
|
|
size_t total_allocated_bytes = 0;
|
|
auto root = doc.FirstChildElement();
|
|
ASSERT_NE(nullptr, root);
|
|
ASSERT_STREQ("malloc", root->Name());
|
|
std::string version(root->Attribute("version"));
|
|
if (version == "jemalloc-1") {
|
|
auto arena = root->FirstChildElement();
|
|
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
|
|
int val;
|
|
|
|
ASSERT_STREQ("heap", arena->Name());
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
|
|
total_allocated_bytes += val;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
|
|
total_allocated_bytes += val;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
|
|
total_allocated_bytes += val;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("bins-total")->QueryIntText(&val));
|
|
}
|
|
// The total needs to be between the mallinfo call before and after
|
|
// since malloc_info allocates some memory.
|
|
EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes);
|
|
EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes);
|
|
} else if (version == "scudo-1") {
|
|
auto element = root->FirstChildElement();
|
|
for (; element != nullptr; element = element->NextSiblingElement()) {
|
|
ASSERT_STREQ("alloc", element->Name());
|
|
int size;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size));
|
|
int count;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count));
|
|
total_allocated_bytes += size * count;
|
|
}
|
|
// Scudo only gives the information on the primary, so simply make
|
|
// sure that the value is non-zero.
|
|
EXPECT_NE(0U, total_allocated_bytes);
|
|
} else {
|
|
// Do not verify output for debug malloc.
|
|
ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, calloc_usable_size) {
|
|
for (size_t size = 1; size <= 2048; size++) {
|
|
void* pointer = malloc(size);
|
|
ASSERT_TRUE(pointer != nullptr);
|
|
memset(pointer, 0xeb, malloc_usable_size(pointer));
|
|
free(pointer);
|
|
|
|
// We should get a previous pointer that has been set to non-zero.
|
|
// If calloc does not zero out all of the data, this will fail.
|
|
uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
|
|
ASSERT_TRUE(pointer != nullptr);
|
|
size_t usable_size = malloc_usable_size(zero_mem);
|
|
for (size_t i = 0; i < usable_size; i++) {
|
|
ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
|
|
}
|
|
free(zero_mem);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, malloc_0) {
|
|
void* p = malloc(0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_0_0) {
|
|
void* p = calloc(0, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_0_1) {
|
|
void* p = calloc(0, 1);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_1_0) {
|
|
void* p = calloc(1, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, realloc_nullptr_0) {
|
|
// realloc(nullptr, size) is actually malloc(size).
|
|
void* p = realloc(nullptr, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, realloc_0) {
|
|
void* p = malloc(1024);
|
|
ASSERT_TRUE(p != nullptr);
|
|
// realloc(p, 0) is actually free(p).
|
|
void* p2 = realloc(p, 0);
|
|
ASSERT_TRUE(p2 == nullptr);
|
|
}
|
|
|
|
constexpr size_t MAX_LOOPS = 200;
|
|
|
|
// Make sure that memory returned by malloc is aligned to allow these data types.
|
|
TEST(malloc, verify_alignment) {
|
|
uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
|
|
uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
|
|
long double** values_ldouble = new long double*[MAX_LOOPS];
|
|
// Use filler to attempt to force the allocator to get potentially bad alignments.
|
|
void** filler = new void*[MAX_LOOPS];
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check uint32_t pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
|
|
ASSERT_TRUE(values_32[i] != nullptr);
|
|
*values_32[i] = i;
|
|
ASSERT_EQ(*values_32[i], i);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check uint64_t pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
|
|
ASSERT_TRUE(values_64[i] != nullptr);
|
|
*values_64[i] = 0x1000 + i;
|
|
ASSERT_EQ(*values_64[i], 0x1000 + i);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check long double pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
|
|
ASSERT_TRUE(values_ldouble[i] != nullptr);
|
|
*values_ldouble[i] = 5.5 + i;
|
|
ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
|
|
// 32 bit glibc has a long double size of 12 bytes, so hardcode the
|
|
// required alignment to 0x7.
|
|
#if !defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
|
|
#else
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
|
|
#endif
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
free(values_32[i]);
|
|
free(values_64[i]);
|
|
free(values_ldouble[i]);
|
|
}
|
|
|
|
delete[] filler;
|
|
delete[] values_32;
|
|
delete[] values_64;
|
|
delete[] values_ldouble;
|
|
}
|
|
|
|
TEST(malloc, mallopt_smoke) {
|
|
#if defined(__BIONIC__)
|
|
errno = 0;
|
|
ASSERT_EQ(0, mallopt(-1000, 1));
|
|
// mallopt doesn't set errno.
|
|
ASSERT_EQ(0, errno);
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, mallopt_decay) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
|
|
errno = 0;
|
|
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
|
|
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
|
|
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
|
|
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, mallopt_purge) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
|
|
errno = 0;
|
|
ASSERT_EQ(1, mallopt(M_PURGE, 0));
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, mallopt_purge_all) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
|
|
errno = 0;
|
|
ASSERT_EQ(1, mallopt(M_PURGE_ALL, 0));
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
// Verify that all of the mallopt values are unique.
|
|
TEST(malloc, mallopt_unique_params) {
|
|
#if defined(__BIONIC__)
|
|
std::vector<std::pair<int, std::string>> params{
|
|
std::make_pair(M_DECAY_TIME, "M_DECAY_TIME"),
|
|
std::make_pair(M_PURGE, "M_PURGE"),
|
|
std::make_pair(M_PURGE_ALL, "M_PURGE_ALL"),
|
|
std::make_pair(M_MEMTAG_TUNING, "M_MEMTAG_TUNING"),
|
|
std::make_pair(M_THREAD_DISABLE_MEM_INIT, "M_THREAD_DISABLE_MEM_INIT"),
|
|
std::make_pair(M_CACHE_COUNT_MAX, "M_CACHE_COUNT_MAX"),
|
|
std::make_pair(M_CACHE_SIZE_MAX, "M_CACHE_SIZE_MAX"),
|
|
std::make_pair(M_TSDS_COUNT_MAX, "M_TSDS_COUNT_MAX"),
|
|
std::make_pair(M_BIONIC_ZERO_INIT, "M_BIONIC_ZERO_INIT"),
|
|
std::make_pair(M_BIONIC_SET_HEAP_TAGGING_LEVEL, "M_BIONIC_SET_HEAP_TAGGING_LEVEL"),
|
|
};
|
|
|
|
std::unordered_map<int, std::string> all_params;
|
|
for (const auto& param : params) {
|
|
EXPECT_TRUE(all_params.count(param.first) == 0)
|
|
<< "mallopt params " << all_params[param.first] << " and " << param.second
|
|
<< " have the same value " << param.first;
|
|
all_params.insert(param);
|
|
}
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static void GetAllocatorVersion(bool* allocator_scudo) {
|
|
TemporaryFile tf;
|
|
ASSERT_TRUE(tf.fd != -1);
|
|
FILE* fp = fdopen(tf.fd, "w+");
|
|
tf.release();
|
|
ASSERT_TRUE(fp != nullptr);
|
|
if (malloc_info(0, fp) != 0) {
|
|
*allocator_scudo = false;
|
|
return;
|
|
}
|
|
ASSERT_EQ(0, fclose(fp));
|
|
|
|
std::string contents;
|
|
ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
|
|
|
|
tinyxml2::XMLDocument doc;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
|
|
|
|
auto root = doc.FirstChildElement();
|
|
ASSERT_NE(nullptr, root);
|
|
ASSERT_STREQ("malloc", root->Name());
|
|
std::string version(root->Attribute("version"));
|
|
*allocator_scudo = (version == "scudo-1");
|
|
}
|
|
#endif
|
|
|
|
TEST(malloc, mallopt_scudo_only_options) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
|
|
bool allocator_scudo;
|
|
GetAllocatorVersion(&allocator_scudo);
|
|
if (!allocator_scudo) {
|
|
GTEST_SKIP() << "scudo allocator only test";
|
|
}
|
|
ASSERT_EQ(1, mallopt(M_CACHE_COUNT_MAX, 100));
|
|
ASSERT_EQ(1, mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2));
|
|
ASSERT_EQ(1, mallopt(M_TSDS_COUNT_MAX, 8));
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, reallocarray_overflow) {
|
|
#if HAVE_REALLOCARRAY
|
|
// Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed".
|
|
size_t a = static_cast<size_t>(INTPTR_MIN + 4);
|
|
size_t b = 2;
|
|
|
|
errno = 0;
|
|
ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr);
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
|
|
errno = 0;
|
|
ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr);
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
#else
|
|
GTEST_SKIP() << "reallocarray not available";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, reallocarray) {
|
|
#if HAVE_REALLOCARRAY
|
|
void* p = reallocarray(nullptr, 2, 32);
|
|
ASSERT_TRUE(p != nullptr);
|
|
ASSERT_GE(malloc_usable_size(p), 64U);
|
|
#else
|
|
GTEST_SKIP() << "reallocarray not available";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, mallinfo) {
|
|
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallinfo";
|
|
static size_t sizes[] = {
|
|
8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000
|
|
};
|
|
|
|
constexpr static size_t kMaxAllocs = 50;
|
|
|
|
for (size_t size : sizes) {
|
|
// If some of these allocations are stuck in a thread cache, then keep
|
|
// looping until we make an allocation that changes the total size of the
|
|
// memory allocated.
|
|
// jemalloc implementations counts the thread cache allocations against
|
|
// total memory allocated.
|
|
void* ptrs[kMaxAllocs] = {};
|
|
bool pass = false;
|
|
for (size_t i = 0; i < kMaxAllocs; i++) {
|
|
size_t allocated = mallinfo().uordblks;
|
|
ptrs[i] = malloc(size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
size_t new_allocated = mallinfo().uordblks;
|
|
if (allocated != new_allocated) {
|
|
size_t usable_size = malloc_usable_size(ptrs[i]);
|
|
// Only check if the total got bigger by at least allocation size.
|
|
// Sometimes the mallinfo numbers can go backwards due to compaction
|
|
// and/or freeing of cached data.
|
|
if (new_allocated >= allocated + usable_size) {
|
|
pass = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (void* ptr : ptrs) {
|
|
free(ptr);
|
|
}
|
|
ASSERT_TRUE(pass)
|
|
<< "For size " << size << " allocated bytes did not increase after "
|
|
<< kMaxAllocs << " allocations.";
|
|
}
|
|
#else
|
|
GTEST_SKIP() << "glibc is broken";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, mallinfo2) {
|
|
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallinfo2";
|
|
static size_t sizes[] = {8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000};
|
|
|
|
constexpr static size_t kMaxAllocs = 50;
|
|
|
|
for (size_t size : sizes) {
|
|
// If some of these allocations are stuck in a thread cache, then keep
|
|
// looping until we make an allocation that changes the total size of the
|
|
// memory allocated.
|
|
// jemalloc implementations counts the thread cache allocations against
|
|
// total memory allocated.
|
|
void* ptrs[kMaxAllocs] = {};
|
|
bool pass = false;
|
|
for (size_t i = 0; i < kMaxAllocs; i++) {
|
|
struct mallinfo info = mallinfo();
|
|
struct mallinfo2 info2 = mallinfo2();
|
|
// Verify that mallinfo and mallinfo2 are exactly the same.
|
|
ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
|
|
ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
|
|
ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
|
|
|
|
size_t allocated = info2.uordblks;
|
|
ptrs[i] = malloc(size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
|
|
info = mallinfo();
|
|
info2 = mallinfo2();
|
|
// Verify that mallinfo and mallinfo2 are exactly the same.
|
|
ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
|
|
ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
|
|
ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
|
|
ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
|
|
|
|
size_t new_allocated = info2.uordblks;
|
|
if (allocated != new_allocated) {
|
|
size_t usable_size = malloc_usable_size(ptrs[i]);
|
|
// Only check if the total got bigger by at least allocation size.
|
|
// Sometimes the mallinfo2 numbers can go backwards due to compaction
|
|
// and/or freeing of cached data.
|
|
if (new_allocated >= allocated + usable_size) {
|
|
pass = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (void* ptr : ptrs) {
|
|
free(ptr);
|
|
}
|
|
ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after "
|
|
<< kMaxAllocs << " allocations.";
|
|
}
|
|
#else
|
|
GTEST_SKIP() << "glibc is broken";
|
|
#endif
|
|
}
|
|
|
|
template <typename Type>
|
|
void __attribute__((optnone)) VerifyAlignment(Type* floating) {
|
|
size_t expected_alignment = alignof(Type);
|
|
if (expected_alignment != 0) {
|
|
ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast<uintptr_t>(floating))
|
|
<< "Expected alignment " << expected_alignment << " ptr value " << floating;
|
|
}
|
|
}
|
|
|
|
template <typename Type>
|
|
void __attribute__((optnone)) TestAllocateType() {
|
|
// The number of allocations to do in a row. This is to attempt to
|
|
// expose the worst case alignment for native allocators that use
|
|
// bins.
|
|
static constexpr size_t kMaxConsecutiveAllocs = 100;
|
|
|
|
// Verify using new directly.
|
|
Type* types[kMaxConsecutiveAllocs];
|
|
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
|
|
types[i] = new Type;
|
|
VerifyAlignment(types[i]);
|
|
if (::testing::Test::HasFatalFailure()) {
|
|
return;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
|
|
delete types[i];
|
|
}
|
|
|
|
// Verify using malloc.
|
|
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
|
|
types[i] = reinterpret_cast<Type*>(malloc(sizeof(Type)));
|
|
ASSERT_TRUE(types[i] != nullptr);
|
|
VerifyAlignment(types[i]);
|
|
if (::testing::Test::HasFatalFailure()) {
|
|
return;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
|
|
free(types[i]);
|
|
}
|
|
|
|
// Verify using a vector.
|
|
std::vector<Type> type_vector(kMaxConsecutiveAllocs);
|
|
for (size_t i = 0; i < type_vector.size(); i++) {
|
|
VerifyAlignment(&type_vector[i]);
|
|
if (::testing::Test::HasFatalFailure()) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(__ANDROID__)
|
|
static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) {
|
|
void* ptrs[100];
|
|
uintptr_t mask = aligned_bytes - 1;
|
|
for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
|
|
ptrs[i] = malloc(alloc_size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptrs[i]) & mask)
|
|
<< "Expected at least " << aligned_bytes << " byte alignment: size "
|
|
<< alloc_size << " actual ptr " << ptrs[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void AlignCheck() {
|
|
// See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445
|
|
// for a discussion of type alignment.
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<float>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<double>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long double>());
|
|
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char16_t>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<char32_t>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<wchar_t>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<signed char>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<short int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<long long int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned char>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned short int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long int>());
|
|
ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long long int>());
|
|
|
|
#if defined(__ANDROID__)
|
|
// On Android, there is a lot of code that expects certain alignments:
|
|
// 1. Allocations of a size that rounds up to a multiple of 16 bytes
|
|
// must have at least 16 byte alignment.
|
|
// 2. Allocations of a size that rounds up to a multiple of 8 bytes and
|
|
// not 16 bytes, are only required to have at least 8 byte alignment.
|
|
// In addition, on Android clang has been configured for 64 bit such that:
|
|
// 3. Allocations <= 8 bytes must be aligned to at least 8 bytes.
|
|
// 4. Allocations > 8 bytes must be aligned to at least 16 bytes.
|
|
// For 32 bit environments, only the first two requirements must be met.
|
|
|
|
// See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for
|
|
// a discussion of this alignment mess. The code below is enforcing
|
|
// strong-alignment, since who knows what code depends on this behavior now.
|
|
// As mentioned before, for 64 bit this will enforce the higher
|
|
// requirement since clang expects this behavior on Android now.
|
|
for (size_t i = 1; i <= 128; i++) {
|
|
#if defined(__LP64__)
|
|
if (i <= 8) {
|
|
AndroidVerifyAlignment(i, 8);
|
|
} else {
|
|
AndroidVerifyAlignment(i, 16);
|
|
}
|
|
#else
|
|
size_t rounded = (i + 7) & ~7;
|
|
if ((rounded % 16) == 0) {
|
|
AndroidVerifyAlignment(i, 16);
|
|
} else {
|
|
AndroidVerifyAlignment(i, 8);
|
|
}
|
|
#endif
|
|
if (::testing::Test::HasFatalFailure()) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, align_check) {
|
|
AlignCheck();
|
|
}
|
|
|
|
// Jemalloc doesn't pass this test right now, so leave it as disabled.
|
|
TEST(malloc, DISABLED_alloc_after_fork) {
|
|
// Both of these need to be a power of 2.
|
|
static constexpr size_t kMinAllocationSize = 8;
|
|
static constexpr size_t kMaxAllocationSize = 2097152;
|
|
|
|
static constexpr size_t kNumAllocatingThreads = 5;
|
|
static constexpr size_t kNumForkLoops = 100;
|
|
|
|
std::atomic_bool stop;
|
|
|
|
// Create threads that simply allocate and free different sizes.
|
|
std::vector<std::thread*> threads;
|
|
for (size_t i = 0; i < kNumAllocatingThreads; i++) {
|
|
std::thread* t = new std::thread([&stop] {
|
|
while (!stop) {
|
|
for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
|
|
void* ptr;
|
|
DoNotOptimize(ptr = malloc(size));
|
|
free(ptr);
|
|
}
|
|
}
|
|
});
|
|
threads.push_back(t);
|
|
}
|
|
|
|
// Create a thread to fork and allocate.
|
|
for (size_t i = 0; i < kNumForkLoops; i++) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
|
|
void* ptr;
|
|
DoNotOptimize(ptr = malloc(size));
|
|
ASSERT_TRUE(ptr != nullptr);
|
|
// Make sure we can touch all of the allocation.
|
|
memset(ptr, 0x1, size);
|
|
ASSERT_LE(size, malloc_usable_size(ptr));
|
|
free(ptr);
|
|
}
|
|
_exit(10);
|
|
}
|
|
ASSERT_NE(-1, pid);
|
|
AssertChildExited(pid, 10);
|
|
}
|
|
|
|
stop = true;
|
|
for (auto thread : threads) {
|
|
thread->join();
|
|
delete thread;
|
|
}
|
|
}
|
|
|
|
TEST(android_mallopt, error_on_unexpected_option) {
|
|
#if defined(__BIONIC__)
|
|
const int unrecognized_option = -1;
|
|
errno = 0;
|
|
EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0));
|
|
EXPECT_EQ(ENOTSUP, errno);
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
bool IsDynamic() {
|
|
#if defined(__LP64__)
|
|
Elf64_Ehdr ehdr;
|
|
#else
|
|
Elf32_Ehdr ehdr;
|
|
#endif
|
|
std::string path(android::base::GetExecutablePath());
|
|
|
|
int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
|
|
if (fd == -1) {
|
|
// Assume dynamic on error.
|
|
return true;
|
|
}
|
|
bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr));
|
|
close(fd);
|
|
// Assume dynamic in error cases.
|
|
return !read_completed || ehdr.e_type == ET_DYN;
|
|
}
|
|
|
|
TEST(android_mallopt, init_zygote_child_profiling) {
|
|
#if defined(__BIONIC__)
|
|
// Successful call.
|
|
errno = 0;
|
|
if (IsDynamic()) {
|
|
EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
|
|
EXPECT_EQ(0, errno);
|
|
} else {
|
|
// Not supported in static executables.
|
|
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
|
|
EXPECT_EQ(ENOTSUP, errno);
|
|
}
|
|
|
|
// Unexpected arguments rejected.
|
|
errno = 0;
|
|
char unexpected = 0;
|
|
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1));
|
|
if (IsDynamic()) {
|
|
EXPECT_EQ(EINVAL, errno);
|
|
} else {
|
|
EXPECT_EQ(ENOTSUP, errno);
|
|
}
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
template <typename FuncType>
|
|
void CheckAllocationFunction(FuncType func) {
|
|
// Assumes that no more than 108MB of memory is allocated before this.
|
|
size_t limit = 128 * 1024 * 1024;
|
|
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
if (!func(20 * 1024 * 1024))
|
|
exit(1);
|
|
if (func(128 * 1024 * 1024))
|
|
exit(1);
|
|
exit(0);
|
|
}
|
|
#endif
|
|
|
|
TEST(android_mallopt, set_allocation_limit) {
|
|
#if defined(__BIONIC__)
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction(
|
|
[](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
|
|
void* ptr;
|
|
return posix_memalign(&ptr, sizeof(void *), bytes) == 0;
|
|
}),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction(
|
|
[](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
|
|
void* p = malloc(1024 * 1024);
|
|
return realloc(p, bytes) != nullptr;
|
|
}),
|
|
testing::ExitedWithCode(0), "");
|
|
#if !defined(__LP64__)
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }),
|
|
testing::ExitedWithCode(0), "");
|
|
#endif
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
TEST(android_mallopt, set_allocation_limit_multiple) {
|
|
#if defined(__BIONIC__)
|
|
// Only the first set should work.
|
|
size_t limit = 256 * 1024 * 1024;
|
|
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
limit = 32 * 1024 * 1024;
|
|
ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static constexpr size_t kAllocationSize = 8 * 1024 * 1024;
|
|
|
|
static size_t GetMaxAllocations() {
|
|
size_t max_pointers = 0;
|
|
void* ptrs[20];
|
|
for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
|
|
ptrs[i] = malloc(kAllocationSize);
|
|
if (ptrs[i] == nullptr) {
|
|
max_pointers = i;
|
|
break;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < max_pointers; i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
return max_pointers;
|
|
}
|
|
|
|
static void VerifyMaxPointers(size_t max_pointers) {
|
|
// Now verify that we can allocate the same number as before.
|
|
void* ptrs[20];
|
|
for (size_t i = 0; i < max_pointers; i++) {
|
|
ptrs[i] = malloc(kAllocationSize);
|
|
ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i;
|
|
}
|
|
|
|
// Make sure the next allocation still fails.
|
|
ASSERT_TRUE(malloc(kAllocationSize) == nullptr);
|
|
for (size_t i = 0; i < max_pointers; i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
TEST(android_mallopt, set_allocation_limit_realloc_increase) {
|
|
#if defined(__BIONIC__)
|
|
size_t limit = 128 * 1024 * 1024;
|
|
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
|
|
size_t max_pointers = GetMaxAllocations();
|
|
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
|
|
|
|
void* memory = malloc(10 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
|
|
// Increase size.
|
|
memory = realloc(memory, 20 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 40 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 60 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 80 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
// Now push past limit.
|
|
memory = realloc(memory, 130 * 1024 * 1024);
|
|
ASSERT_TRUE(memory == nullptr);
|
|
|
|
VerifyMaxPointers(max_pointers);
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
TEST(android_mallopt, set_allocation_limit_realloc_decrease) {
|
|
#if defined(__BIONIC__)
|
|
size_t limit = 100 * 1024 * 1024;
|
|
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
|
|
size_t max_pointers = GetMaxAllocations();
|
|
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
|
|
|
|
void* memory = malloc(80 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
|
|
// Decrease size.
|
|
memory = realloc(memory, 60 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 40 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 20 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
memory = realloc(memory, 10 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
free(memory);
|
|
|
|
VerifyMaxPointers(max_pointers);
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
TEST(android_mallopt, set_allocation_limit_realloc_free) {
|
|
#if defined(__BIONIC__)
|
|
size_t limit = 100 * 1024 * 1024;
|
|
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
|
|
|
|
size_t max_pointers = GetMaxAllocations();
|
|
ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
|
|
|
|
void* memory = malloc(60 * 1024 * 1024);
|
|
ASSERT_TRUE(memory != nullptr);
|
|
|
|
memory = realloc(memory, 0);
|
|
ASSERT_TRUE(memory == nullptr);
|
|
|
|
VerifyMaxPointers(max_pointers);
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static void* SetAllocationLimit(void* data) {
|
|
std::atomic_bool* go = reinterpret_cast<std::atomic_bool*>(data);
|
|
while (!go->load()) {
|
|
}
|
|
size_t limit = 500 * 1024 * 1024;
|
|
if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) {
|
|
return reinterpret_cast<void*>(-1);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void SetAllocationLimitMultipleThreads() {
|
|
std::atomic_bool go;
|
|
go = false;
|
|
|
|
static constexpr size_t kNumThreads = 4;
|
|
pthread_t threads[kNumThreads];
|
|
for (size_t i = 0; i < kNumThreads; i++) {
|
|
ASSERT_EQ(0, pthread_create(&threads[i], nullptr, SetAllocationLimit, &go));
|
|
}
|
|
|
|
// Let them go all at once.
|
|
go = true;
|
|
// Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger
|
|
// heapprofd handler.
|
|
union sigval signal_value;
|
|
signal_value.sival_int = 0;
|
|
ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value));
|
|
|
|
size_t num_successful = 0;
|
|
for (size_t i = 0; i < kNumThreads; i++) {
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(threads[i], &result));
|
|
if (result != nullptr) {
|
|
num_successful++;
|
|
}
|
|
}
|
|
ASSERT_EQ(1U, num_successful);
|
|
exit(0);
|
|
}
|
|
#endif
|
|
|
|
TEST(android_mallopt, set_allocation_limit_multiple_threads) {
|
|
#if defined(__BIONIC__)
|
|
if (IsDynamic()) {
|
|
ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
|
|
}
|
|
|
|
// Run this a number of times as a stress test.
|
|
for (size_t i = 0; i < 100; i++) {
|
|
// Not using ASSERT_EXIT because errors messages are not displayed.
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads());
|
|
}
|
|
ASSERT_NE(-1, pid);
|
|
int status;
|
|
ASSERT_EQ(pid, wait(&status));
|
|
ASSERT_EQ(0, WEXITSTATUS(status));
|
|
}
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
using Action = android_mallopt_gwp_asan_options_t::Action;
|
|
TEST(android_mallopt, DISABLED_multiple_enable_gwp_asan) {
|
|
android_mallopt_gwp_asan_options_t options;
|
|
options.program_name = ""; // Don't infer GWP-ASan options from sysprops.
|
|
options.desire = Action::DONT_TURN_ON_UNLESS_OVERRIDDEN;
|
|
// GWP-ASan should already be enabled. Trying to enable or disable it should
|
|
// always pass.
|
|
ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
|
|
options.desire = Action::TURN_ON_WITH_SAMPLING;
|
|
ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
|
|
}
|
|
#endif // defined(__BIONIC__)
|
|
|
|
TEST(android_mallopt, multiple_enable_gwp_asan) {
|
|
#if defined(__BIONIC__)
|
|
// Always enable GWP-Asan, with default options.
|
|
RunGwpAsanTest("*.DISABLED_multiple_enable_gwp_asan");
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
TEST(android_mallopt, memtag_stack_is_on) {
|
|
#if defined(__BIONIC__)
|
|
bool memtag_stack;
|
|
EXPECT_TRUE(android_mallopt(M_MEMTAG_STACK_IS_ON, &memtag_stack, sizeof(memtag_stack)));
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
void TestHeapZeroing(int num_iterations, int (*get_alloc_size)(int iteration)) {
|
|
std::vector<void*> allocs;
|
|
constexpr int kMaxBytesToCheckZero = 64;
|
|
const char kBlankMemory[kMaxBytesToCheckZero] = {};
|
|
|
|
for (int i = 0; i < num_iterations; ++i) {
|
|
int size = get_alloc_size(i);
|
|
allocs.push_back(malloc(size));
|
|
memset(allocs.back(), 'X', std::min(size, kMaxBytesToCheckZero));
|
|
}
|
|
|
|
for (void* alloc : allocs) {
|
|
free(alloc);
|
|
}
|
|
allocs.clear();
|
|
|
|
for (int i = 0; i < num_iterations; ++i) {
|
|
int size = get_alloc_size(i);
|
|
allocs.push_back(malloc(size));
|
|
ASSERT_EQ(0, memcmp(allocs.back(), kBlankMemory, std::min(size, kMaxBytesToCheckZero)));
|
|
}
|
|
|
|
for (void* alloc : allocs) {
|
|
free(alloc);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, zero_init) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
|
|
bool allocator_scudo;
|
|
GetAllocatorVersion(&allocator_scudo);
|
|
if (!allocator_scudo) {
|
|
GTEST_SKIP() << "scudo allocator only test";
|
|
}
|
|
|
|
mallopt(M_BIONIC_ZERO_INIT, 1);
|
|
|
|
// Test using a block of 4K small (1-32 byte) allocations.
|
|
TestHeapZeroing(/* num_iterations */ 0x1000, [](int iteration) -> int {
|
|
return 1 + iteration % 32;
|
|
});
|
|
|
|
// Also test large allocations that land in the scudo secondary, as this is
|
|
// the only part of Scudo that's changed by enabling zero initialization with
|
|
// MTE. Uses 32 allocations, totalling 60MiB memory. Decay time (time to
|
|
// release secondary allocations back to the OS) was modified to 0ms/1ms by
|
|
// mallopt_decay. Ensure that we delay for at least a second before releasing
|
|
// pages to the OS in order to avoid implicit zeroing by the kernel.
|
|
mallopt(M_DECAY_TIME, 1000);
|
|
TestHeapZeroing(/* num_iterations */ 32, [](int iteration) -> int {
|
|
return 1 << (19 + iteration % 4);
|
|
});
|
|
|
|
#else
|
|
GTEST_SKIP() << "bionic-only test";
|
|
#endif
|
|
}
|
|
|
|
// Note that MTE is enabled on cc_tests on devices that support MTE.
|
|
TEST(malloc, disable_mte) {
|
|
#if defined(__BIONIC__)
|
|
if (!mte_supported()) {
|
|
GTEST_SKIP() << "This function can only be tested with MTE";
|
|
}
|
|
|
|
sem_t sem;
|
|
ASSERT_EQ(0, sem_init(&sem, 0, 0));
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(
|
|
&thread, nullptr,
|
|
[](void* ptr) -> void* {
|
|
auto* sem = reinterpret_cast<sem_t*>(ptr);
|
|
sem_wait(sem);
|
|
return reinterpret_cast<void*>(prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
|
|
},
|
|
&sem));
|
|
|
|
ASSERT_EQ(1, mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_NONE));
|
|
ASSERT_EQ(0, sem_post(&sem));
|
|
|
|
int my_tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
|
|
ASSERT_EQ(static_cast<unsigned long>(PR_MTE_TCF_NONE), my_tagged_addr_ctrl & PR_MTE_TCF_MASK);
|
|
|
|
void* retval;
|
|
ASSERT_EQ(0, pthread_join(thread, &retval));
|
|
int thread_tagged_addr_ctrl = reinterpret_cast<uintptr_t>(retval);
|
|
ASSERT_EQ(my_tagged_addr_ctrl, thread_tagged_addr_ctrl);
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, allocation_slack) {
|
|
#if defined(__BIONIC__)
|
|
SKIP_WITH_NATIVE_BRIDGE; // http://b/189606147
|
|
|
|
bool allocator_scudo;
|
|
GetAllocatorVersion(&allocator_scudo);
|
|
if (!allocator_scudo) {
|
|
GTEST_SKIP() << "scudo allocator only test";
|
|
}
|
|
|
|
// Test that older target SDK levels let you access a few bytes off the end of
|
|
// a large allocation.
|
|
android_set_application_target_sdk_version(29);
|
|
auto p = std::make_unique<char[]>(131072);
|
|
volatile char *vp = p.get();
|
|
volatile char oob ATTRIBUTE_UNUSED = vp[131072];
|
|
#else
|
|
GTEST_SKIP() << "bionic extension";
|
|
#endif
|
|
}
|
|
|
|
// Regression test for b/206701345 -- scudo bug, MTE only.
|
|
// Fix: https://reviews.llvm.org/D105261
|
|
// Fix: https://android-review.googlesource.com/c/platform/external/scudo/+/1763655
|
|
TEST(malloc, realloc_mte_crash_b206701345) {
|
|
// We want to hit in-place realloc at the very end of an mmap-ed region. Not
|
|
// all size classes allow such placement - mmap size has to be divisible by
|
|
// the block size. At the time of writing this could only be reproduced with
|
|
// 64 byte size class (i.e. 48 byte allocations), but that may change in the
|
|
// future. Try several different classes at the lower end.
|
|
std::vector<void*> ptrs(10000);
|
|
for (int i = 1; i < 32; ++i) {
|
|
size_t sz = 16 * i - 1;
|
|
for (void*& p : ptrs) {
|
|
p = realloc(malloc(sz), sz + 1);
|
|
}
|
|
|
|
for (void* p : ptrs) {
|
|
free(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VerifyAllocationsAreZero(std::function<void*(size_t)> alloc_func, std::string function_name,
|
|
std::vector<size_t>& test_sizes, size_t max_allocations) {
|
|
// Vector of zero'd data used for comparisons. Make it twice the largest size.
|
|
std::vector<char> zero(test_sizes.back() * 2, 0);
|
|
|
|
SCOPED_TRACE(testing::Message() << function_name << " failed to zero memory");
|
|
|
|
for (size_t test_size : test_sizes) {
|
|
std::vector<void*> ptrs(max_allocations);
|
|
for (size_t i = 0; i < ptrs.size(); i++) {
|
|
SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
|
|
ptrs[i] = alloc_func(test_size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
size_t alloc_size = malloc_usable_size(ptrs[i]);
|
|
ASSERT_LE(alloc_size, zero.size());
|
|
ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
|
|
|
|
// Set the memory to non-zero to make sure if the pointer
|
|
// is reused it's still zero.
|
|
memset(ptrs[i], 0xab, alloc_size);
|
|
}
|
|
// Free the pointers.
|
|
for (size_t i = 0; i < ptrs.size(); i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
for (size_t i = 0; i < ptrs.size(); i++) {
|
|
SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
|
|
ptrs[i] = malloc(test_size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
size_t alloc_size = malloc_usable_size(ptrs[i]);
|
|
ASSERT_LE(alloc_size, zero.size());
|
|
ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
|
|
}
|
|
// Free all of the pointers later to maximize the chance of reusing from
|
|
// the first loop.
|
|
for (size_t i = 0; i < ptrs.size(); i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that small and medium allocations are always zero.
|
|
// @CddTest = 9.7/C-4-1
|
|
TEST(malloc, zeroed_allocations_small_medium_sizes) {
|
|
#if !defined(__BIONIC__)
|
|
GTEST_SKIP() << "Only valid on bionic";
|
|
#endif
|
|
|
|
if (IsLowRamDevice()) {
|
|
GTEST_SKIP() << "Skipped on low memory devices.";
|
|
}
|
|
|
|
constexpr size_t kMaxAllocations = 1024;
|
|
std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
|
|
VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
|
|
kMaxAllocations);
|
|
|
|
VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
|
|
test_sizes, kMaxAllocations);
|
|
|
|
VerifyAllocationsAreZero(
|
|
[](size_t size) -> void* {
|
|
void* ptr;
|
|
if (posix_memalign(&ptr, 64, size) == 0) {
|
|
return ptr;
|
|
}
|
|
return nullptr;
|
|
},
|
|
"posix_memalign", test_sizes, kMaxAllocations);
|
|
}
|
|
|
|
// Verify that large allocations are always zero.
|
|
// @CddTest = 9.7/C-4-1
|
|
TEST(malloc, zeroed_allocations_large_sizes) {
|
|
#if !defined(__BIONIC__)
|
|
GTEST_SKIP() << "Only valid on bionic";
|
|
#endif
|
|
|
|
if (IsLowRamDevice()) {
|
|
GTEST_SKIP() << "Skipped on low memory devices.";
|
|
}
|
|
|
|
constexpr size_t kMaxAllocations = 20;
|
|
std::vector<size_t> test_sizes = {1000000, 2000000, 3000000, 4000000};
|
|
VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
|
|
kMaxAllocations);
|
|
|
|
VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
|
|
test_sizes, kMaxAllocations);
|
|
|
|
VerifyAllocationsAreZero(
|
|
[](size_t size) -> void* {
|
|
void* ptr;
|
|
if (posix_memalign(&ptr, 64, size) == 0) {
|
|
return ptr;
|
|
}
|
|
return nullptr;
|
|
},
|
|
"posix_memalign", test_sizes, kMaxAllocations);
|
|
}
|
|
|
|
// Verify that reallocs are zeroed when expanded.
|
|
// @CddTest = 9.7/C-4-1
|
|
TEST(malloc, zeroed_allocations_realloc) {
|
|
#if !defined(__BIONIC__)
|
|
GTEST_SKIP() << "Only valid on bionic";
|
|
#endif
|
|
|
|
if (IsLowRamDevice()) {
|
|
GTEST_SKIP() << "Skipped on low memory devices.";
|
|
}
|
|
|
|
// Vector of zero'd data used for comparisons.
|
|
constexpr size_t kMaxMemorySize = 131072;
|
|
std::vector<char> zero(kMaxMemorySize, 0);
|
|
|
|
constexpr size_t kMaxAllocations = 1024;
|
|
std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
|
|
// Do a number of allocations and set them to non-zero.
|
|
for (size_t test_size : test_sizes) {
|
|
std::vector<void*> ptrs(kMaxAllocations);
|
|
for (size_t i = 0; i < kMaxAllocations; i++) {
|
|
ptrs[i] = malloc(test_size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
|
|
// Set the memory to non-zero to make sure if the pointer
|
|
// is reused it's still zero.
|
|
memset(ptrs[i], 0xab, malloc_usable_size(ptrs[i]));
|
|
}
|
|
// Free the pointers.
|
|
for (size_t i = 0; i < kMaxAllocations; i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
}
|
|
|
|
// Do the reallocs to a larger size and verify the rest of the allocation
|
|
// is zero.
|
|
constexpr size_t kInitialSize = 8;
|
|
for (size_t test_size : test_sizes) {
|
|
std::vector<void*> ptrs(kMaxAllocations);
|
|
for (size_t i = 0; i < kMaxAllocations; i++) {
|
|
ptrs[i] = malloc(kInitialSize);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
size_t orig_alloc_size = malloc_usable_size(ptrs[i]);
|
|
|
|
ptrs[i] = realloc(ptrs[i], test_size);
|
|
ASSERT_TRUE(ptrs[i] != nullptr);
|
|
size_t new_alloc_size = malloc_usable_size(ptrs[i]);
|
|
char* ptr = reinterpret_cast<char*>(ptrs[i]);
|
|
ASSERT_EQ(0, memcmp(&ptr[orig_alloc_size], zero.data(), new_alloc_size - orig_alloc_size))
|
|
<< "realloc from " << kInitialSize << " to size " << test_size << " at iteration " << i;
|
|
}
|
|
for (size_t i = 0; i < kMaxAllocations; i++) {
|
|
free(ptrs[i]);
|
|
}
|
|
}
|
|
}
|