android_bionic/tests/sched_test.cpp

304 lines
8.1 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <errno.h>
#include <sched.h>
#include <sys/types.h>
#include <sys/wait.h>
static int child_fn(void* i_ptr) {
*reinterpret_cast<int*>(i_ptr) = 42;
return 123;
}
#if defined(__BIONIC__)
TEST(sched, clone) {
void* child_stack[1024];
int i = 0;
pid_t tid = clone(child_fn, &child_stack[1024], CLONE_VM, &i);
int status;
ASSERT_EQ(tid, TEMP_FAILURE_RETRY(waitpid(tid, &status, __WCLONE)));
ASSERT_EQ(42, i);
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(123, WEXITSTATUS(status));
}
#else
// For glibc, any call to clone with CLONE_VM set will cause later pthread
// calls in the same process to misbehave.
// See https://sourceware.org/bugzilla/show_bug.cgi?id=10311 for more details.
TEST(sched, clone) {
// In order to enumerate all possible tests for CTS, create an empty test.
GTEST_LOG_(INFO) << "This test does nothing.\n";
}
#endif
TEST(sched, clone_errno) {
// Check that our hand-written clone assembler sets errno correctly on failure.
uintptr_t fake_child_stack[16];
errno = 0;
// If CLONE_THREAD is set, CLONE_SIGHAND must be set too.
ASSERT_EQ(-1, clone(child_fn, &fake_child_stack[16], CLONE_THREAD, nullptr));
ASSERT_EQ(EINVAL, errno);
}
TEST(sched, clone_null_child_stack) {
int i = 0;
errno = 0;
ASSERT_EQ(-1, clone(child_fn, nullptr, CLONE_VM, &i));
ASSERT_EQ(EINVAL, errno);
}
TEST(sched, cpu_set) {
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set);
CPU_SET(17, &set);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 0 || i == 17, CPU_ISSET(i, &set));
}
// We should fail silently if we try to set/test outside the range.
CPU_SET(CPU_SETSIZE, &set);
ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set));
}
TEST(sched, cpu_count) {
cpu_set_t set;
CPU_ZERO(&set);
ASSERT_EQ(0, CPU_COUNT(&set));
CPU_SET(2, &set);
CPU_SET(10, &set);
ASSERT_EQ(2, CPU_COUNT(&set));
CPU_CLR(10, &set);
ASSERT_EQ(1, CPU_COUNT(&set));
}
TEST(sched, cpu_zero) {
cpu_set_t set;
CPU_ZERO(&set);
ASSERT_EQ(0, CPU_COUNT(&set));
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_FALSE(CPU_ISSET(i, &set));
}
}
TEST(sched, cpu_clr) {
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set);
CPU_SET(1, &set);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set));
}
CPU_CLR(1, &set);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 0, CPU_ISSET(i, &set));
}
// We should fail silently if we try to clear/test outside the range.
CPU_CLR(CPU_SETSIZE, &set);
ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set));
}
TEST(sched, cpu_equal) {
cpu_set_t set1;
cpu_set_t set2;
CPU_ZERO(&set1);
CPU_ZERO(&set2);
CPU_SET(1, &set1);
ASSERT_FALSE(CPU_EQUAL(&set1, &set2));
CPU_SET(1, &set2);
ASSERT_TRUE(CPU_EQUAL(&set1, &set2));
}
TEST(sched, cpu_op) {
cpu_set_t set1;
cpu_set_t set2;
cpu_set_t set3;
CPU_ZERO(&set1);
CPU_ZERO(&set2);
CPU_ZERO(&set3);
CPU_SET(0, &set1);
CPU_SET(0, &set2);
CPU_SET(1, &set2);
CPU_AND(&set3, &set1, &set2);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 0, CPU_ISSET(i, &set3));
}
CPU_XOR(&set3, &set1, &set2);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 1, CPU_ISSET(i, &set3));
}
CPU_OR(&set3, &set1, &set2);
for (int i = 0; i < CPU_SETSIZE; i++) {
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set3));
}
}
TEST(sched, cpu_alloc_small) {
cpu_set_t* set = CPU_ALLOC(17);
size_t size = CPU_ALLOC_SIZE(17);
CPU_ZERO_S(size, set);
ASSERT_EQ(0, CPU_COUNT_S(size, set));
CPU_SET_S(16, size, set);
ASSERT_TRUE(CPU_ISSET_S(16, size, set));
CPU_FREE(set);
}
TEST(sched, cpu_alloc_big) {
cpu_set_t* set = CPU_ALLOC(10 * CPU_SETSIZE);
size_t size = CPU_ALLOC_SIZE(10 * CPU_SETSIZE);
CPU_ZERO_S(size, set);
ASSERT_EQ(0, CPU_COUNT_S(size, set));
CPU_SET_S(CPU_SETSIZE, size, set);
ASSERT_TRUE(CPU_ISSET_S(CPU_SETSIZE, size, set));
CPU_FREE(set);
}
TEST(sched, cpu_s_macros) {
int set_size = 64;
size_t size = CPU_ALLOC_SIZE(set_size);
cpu_set_t* set = CPU_ALLOC(set_size);
CPU_ZERO_S(size, set);
for (int i = 0; i < set_size; i++) {
ASSERT_FALSE(CPU_ISSET_S(i, size, set));
CPU_SET_S(i, size, set);
ASSERT_TRUE(CPU_ISSET_S(i, size, set));
ASSERT_EQ(i + 1, CPU_COUNT_S(size, set));
}
for (int i = 0; i < set_size; i++) {
CPU_CLR_S(i, size, set);
ASSERT_FALSE(CPU_ISSET_S(i, size, set));
ASSERT_EQ(set_size - i - 1, CPU_COUNT_S(size, set));
}
CPU_FREE(set);
}
TEST(sched, cpu_op_s_macros) {
int set_size1 = 64;
int set_size2 = set_size1 * 2;
int set_size3 = set_size1 * 3;
size_t size1 = CPU_ALLOC_SIZE(set_size1);
size_t size2 = CPU_ALLOC_SIZE(set_size2);
size_t size3 = CPU_ALLOC_SIZE(set_size3);
cpu_set_t* set1 = CPU_ALLOC(set_size1);
cpu_set_t* set2 = CPU_ALLOC(set_size2);
cpu_set_t* set3 = CPU_ALLOC(set_size3);
CPU_ZERO_S(size1, set1);
CPU_ZERO_S(size2, set2);
CPU_ZERO_S(size3, set3);
CPU_SET_S(0, size1, set1);
CPU_SET_S(0, size2, set2);
CPU_SET_S(1, size3, set2);
CPU_AND_S(size1, set3, set1, set2);
for (int i = 0; i < set_size3; i++) {
ASSERT_EQ(i == 0, CPU_ISSET_S(i, size3, set3));
}
CPU_OR_S(size1, set3, set1, set2);
for (int i = 0; i < set_size3; i++) {
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET_S(i, size3, set3));
}
CPU_XOR_S(size1, set3, set1, set2);
for (int i = 0; i < set_size3; i++) {
ASSERT_EQ(i == 1, CPU_ISSET_S(i, size3, set3));
}
CPU_FREE(set1);
CPU_FREE(set2);
CPU_FREE(set3);
}
TEST(sched, cpu_equal_s) {
int set_size1 = 64;
int set_size2 = set_size1 * 2;
size_t size1 = CPU_ALLOC_SIZE(set_size1);
size_t size2 = CPU_ALLOC_SIZE(set_size2);
cpu_set_t* set1 = CPU_ALLOC(set_size1);
cpu_set_t* set2 = CPU_ALLOC(set_size2);
CPU_ZERO_S(size1, set1);
CPU_ZERO_S(size2, set2);
CPU_SET_S(0, size1, set1);
ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set1));
ASSERT_FALSE(CPU_EQUAL_S(size1, set1, set2));
CPU_SET_S(0, size2, set2);
ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set2));
CPU_FREE(set1);
CPU_FREE(set2);
}
TEST(sched, sched_get_priority_min_sched_get_priority_max) {
EXPECT_LE(sched_get_priority_min(SCHED_BATCH), sched_get_priority_max(SCHED_BATCH));
EXPECT_LE(sched_get_priority_min(SCHED_FIFO), sched_get_priority_max(SCHED_FIFO));
EXPECT_LE(sched_get_priority_min(SCHED_IDLE), sched_get_priority_max(SCHED_IDLE));
EXPECT_LE(sched_get_priority_min(SCHED_OTHER), sched_get_priority_max(SCHED_OTHER));
EXPECT_LE(sched_get_priority_min(SCHED_RR), sched_get_priority_max(SCHED_RR));
}
TEST(sched, sched_getscheduler_sched_setscheduler) {
// POSIX: "If pid is zero, the scheduling policy shall be returned for the
// calling process".
ASSERT_EQ(sched_getscheduler(getpid()), sched_getscheduler(0));
const int original_policy = sched_getscheduler(getpid());
sched_param p = {};
p.sched_priority = sched_get_priority_min(original_policy);
errno = 0;
ASSERT_EQ(-1, sched_setscheduler(getpid(), INT_MAX, &p));
ASSERT_EQ(EINVAL, errno);
ASSERT_EQ(0, sched_getparam(getpid(), &p));
ASSERT_EQ(original_policy, sched_setscheduler(getpid(), SCHED_BATCH, &p));
// POSIX says this should return the previous policy (here SCHED_BATCH),
// but the Linux system call doesn't, and the glibc wrapper doesn't correct
// this (the "returns 0" behavior is even documented on the man page in
// the BUGS section). This was our historical behavior too, so in the
// absence of reasons to break compatibility with ourselves and glibc, we
// don't behave as POSIX specifies. http://b/26203902.
ASSERT_EQ(0, sched_setscheduler(getpid(), original_policy, &p));
}