653 lines
19 KiB
C
653 lines
19 KiB
C
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "pthread_internal.h"
|
|
|
|
#include <errno.h>
|
|
#include <linux/time.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
extern int __pthread_cond_timedwait(pthread_cond_t*, pthread_mutex_t*, const struct timespec*,
|
|
clockid_t);
|
|
|
|
extern int __pthread_cond_timedwait_relative(pthread_cond_t*, pthread_mutex_t*,
|
|
const struct timespec*);
|
|
|
|
// Normal (i.e. non-SIGEV_THREAD) timers are created directly by the kernel
|
|
// and are passed as is to/from the caller.
|
|
//
|
|
// This file also implements the support required for SIGEV_THREAD ("POSIX interval")
|
|
// timers. See the following pages for additional details:
|
|
//
|
|
// www.opengroup.org/onlinepubs/000095399/functions/timer_create.html
|
|
// www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html
|
|
// www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_04.html#tag_02_04_01
|
|
//
|
|
// The Linux kernel doesn't support these, so we need to implement them in the
|
|
// C library. We use a very basic scheme where each timer is associated to a
|
|
// thread that will loop, waiting for timeouts or messages from the program
|
|
// corresponding to calls to timer_settime() and timer_delete().
|
|
//
|
|
// Note also an important thing: Posix mandates that in the case of fork(),
|
|
// the timers of the child process should be disarmed, but not deleted.
|
|
// this is implemented by providing a fork() wrapper (see bionic/fork.c) which
|
|
// stops all timers before the fork, and only re-start them in case of error
|
|
// or in the parent process.
|
|
//
|
|
// This stop/start is implemented by the __timer_table_start_stop() function
|
|
// below.
|
|
//
|
|
// A SIGEV_THREAD timer ID will always have its TIMER_ID_WRAP_BIT
|
|
// set to 1. In this implementation, this is always bit 31, which is
|
|
// guaranteed to never be used by kernel-provided timer ids
|
|
//
|
|
// (See code in <kernel>/lib/idr.c, used to manage IDs, to see why.)
|
|
|
|
#define TIMER_ID_WRAP_BIT 0x80000000
|
|
#define TIMER_ID_WRAP(id) ((timer_t)((id) | TIMER_ID_WRAP_BIT))
|
|
#define TIMER_ID_UNWRAP(id) ((timer_t)((id) & ~TIMER_ID_WRAP_BIT))
|
|
#define TIMER_ID_IS_WRAPPED(id) (((id) & TIMER_ID_WRAP_BIT) != 0)
|
|
|
|
/* this value is used internally to indicate a 'free' or 'zombie'
|
|
* thr_timer structure. Here, 'zombie' means that timer_delete()
|
|
* has been called, but that the corresponding thread hasn't
|
|
* exited yet.
|
|
*/
|
|
#define TIMER_ID_NONE ((timer_t)0xffffffff)
|
|
|
|
/* True iff a timer id is valid */
|
|
#define TIMER_ID_IS_VALID(id) ((id) != TIMER_ID_NONE)
|
|
|
|
/* the maximum value of overrun counters */
|
|
#define DELAYTIMER_MAX 0x7fffffff
|
|
|
|
typedef struct thr_timer thr_timer_t;
|
|
typedef struct thr_timer_table thr_timer_table_t;
|
|
|
|
/* The Posix spec says the function receives an unsigned parameter, but
|
|
* it's really a 'union sigval' a.k.a. sigval_t */
|
|
typedef void (*thr_timer_func_t)( sigval_t );
|
|
|
|
struct thr_timer {
|
|
thr_timer_t* next; /* next in free list */
|
|
timer_t id; /* TIMER_ID_NONE iff free or dying */
|
|
clockid_t clock;
|
|
pthread_t thread;
|
|
pthread_attr_t attributes;
|
|
thr_timer_func_t callback;
|
|
sigval_t value;
|
|
|
|
/* the following are used to communicate between
|
|
* the timer thread and the timer_XXX() functions
|
|
*/
|
|
pthread_mutex_t mutex; /* lock */
|
|
pthread_cond_t cond; /* signal a state change to thread */
|
|
int volatile done; /* set by timer_delete */
|
|
int volatile stopped; /* set by _start_stop() */
|
|
struct timespec volatile expires; /* next expiration time, or 0 */
|
|
struct timespec volatile period; /* reload value, or 0 */
|
|
int volatile overruns; /* current number of overruns */
|
|
};
|
|
|
|
#define MAX_THREAD_TIMERS 32
|
|
|
|
struct thr_timer_table {
|
|
pthread_mutex_t lock;
|
|
thr_timer_t* free_timer;
|
|
thr_timer_t timers[ MAX_THREAD_TIMERS ];
|
|
};
|
|
|
|
/** GLOBAL TABLE OF THREAD TIMERS
|
|
**/
|
|
|
|
static void
|
|
thr_timer_table_init( thr_timer_table_t* t )
|
|
{
|
|
int nn;
|
|
|
|
memset(t, 0, sizeof *t);
|
|
pthread_mutex_init( &t->lock, NULL );
|
|
|
|
for (nn = 0; nn < MAX_THREAD_TIMERS; nn++)
|
|
t->timers[nn].id = TIMER_ID_NONE;
|
|
|
|
t->free_timer = &t->timers[0];
|
|
for (nn = 1; nn < MAX_THREAD_TIMERS; nn++)
|
|
t->timers[nn-1].next = &t->timers[nn];
|
|
}
|
|
|
|
|
|
static thr_timer_t*
|
|
thr_timer_table_alloc( thr_timer_table_t* t )
|
|
{
|
|
thr_timer_t* timer;
|
|
|
|
if (t == NULL)
|
|
return NULL;
|
|
|
|
pthread_mutex_lock(&t->lock);
|
|
timer = t->free_timer;
|
|
if (timer != NULL) {
|
|
t->free_timer = timer->next;
|
|
timer->next = NULL;
|
|
timer->id = TIMER_ID_WRAP((timer - t->timers));
|
|
}
|
|
pthread_mutex_unlock(&t->lock);
|
|
return timer;
|
|
}
|
|
|
|
|
|
static void
|
|
thr_timer_table_free( thr_timer_table_t* t, thr_timer_t* timer )
|
|
{
|
|
pthread_mutex_lock( &t->lock );
|
|
timer->id = TIMER_ID_NONE;
|
|
timer->thread = 0;
|
|
timer->next = t->free_timer;
|
|
t->free_timer = timer;
|
|
pthread_mutex_unlock( &t->lock );
|
|
}
|
|
|
|
|
|
static void thr_timer_table_start_stop(thr_timer_table_t* t, int stop) {
|
|
if (t == NULL) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&t->lock);
|
|
for (int nn = 0; nn < MAX_THREAD_TIMERS; ++nn) {
|
|
thr_timer_t* timer = &t->timers[nn];
|
|
if (TIMER_ID_IS_VALID(timer->id)) {
|
|
// Tell the thread to start/stop.
|
|
pthread_mutex_lock(&timer->mutex);
|
|
timer->stopped = stop;
|
|
pthread_cond_signal( &timer->cond );
|
|
pthread_mutex_unlock(&timer->mutex);
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&t->lock);
|
|
}
|
|
|
|
|
|
/* convert a timer_id into the corresponding thr_timer_t* pointer
|
|
* returns NULL if the id is not wrapped or is invalid/free
|
|
*/
|
|
static thr_timer_t*
|
|
thr_timer_table_from_id( thr_timer_table_t* t,
|
|
timer_t id,
|
|
int remove )
|
|
{
|
|
unsigned index;
|
|
thr_timer_t* timer;
|
|
|
|
if (t == NULL || !TIMER_ID_IS_WRAPPED(id))
|
|
return NULL;
|
|
|
|
index = (unsigned) TIMER_ID_UNWRAP(id);
|
|
if (index >= MAX_THREAD_TIMERS)
|
|
return NULL;
|
|
|
|
pthread_mutex_lock(&t->lock);
|
|
|
|
timer = &t->timers[index];
|
|
|
|
if (!TIMER_ID_IS_VALID(timer->id)) {
|
|
timer = NULL;
|
|
} else {
|
|
/* if we're removing this timer, clear the id
|
|
* right now to prevent another thread to
|
|
* use the same id after the unlock */
|
|
if (remove)
|
|
timer->id = TIMER_ID_NONE;
|
|
}
|
|
pthread_mutex_unlock(&t->lock);
|
|
|
|
return timer;
|
|
}
|
|
|
|
/* the static timer table - we only create it if the process
|
|
* really wants to use SIGEV_THREAD timers, which should be
|
|
* pretty infrequent
|
|
*/
|
|
|
|
static pthread_once_t __timer_table_once = PTHREAD_ONCE_INIT;
|
|
static thr_timer_table_t* __timer_table;
|
|
|
|
static void __timer_table_init(void) {
|
|
__timer_table = calloc(1, sizeof(*__timer_table));
|
|
if (__timer_table != NULL) {
|
|
thr_timer_table_init(__timer_table);
|
|
}
|
|
}
|
|
|
|
static thr_timer_table_t* __timer_table_get(void) {
|
|
pthread_once(&__timer_table_once, __timer_table_init);
|
|
return __timer_table;
|
|
}
|
|
|
|
/** POSIX THREAD TIMERS CLEANUP ON FORK
|
|
**
|
|
** this should be called from the 'fork()' wrapper to stop/start
|
|
** all active thread timers. this is used to implement a Posix
|
|
** requirements: the timers of fork child processes must be
|
|
** disarmed but not deleted.
|
|
**/
|
|
__LIBC_HIDDEN__ void __timer_table_start_stop(int stop) {
|
|
// We access __timer_table directly so we don't create it if it doesn't yet exist.
|
|
thr_timer_table_start_stop(__timer_table, stop);
|
|
}
|
|
|
|
static thr_timer_t*
|
|
thr_timer_from_id( timer_t id )
|
|
{
|
|
thr_timer_table_t* table = __timer_table_get();
|
|
thr_timer_t* timer = thr_timer_table_from_id( table, id, 0 );
|
|
|
|
return timer;
|
|
}
|
|
|
|
|
|
static __inline__ void
|
|
thr_timer_lock( thr_timer_t* t )
|
|
{
|
|
pthread_mutex_lock(&t->mutex);
|
|
}
|
|
|
|
static __inline__ void
|
|
thr_timer_unlock( thr_timer_t* t )
|
|
{
|
|
pthread_mutex_unlock(&t->mutex);
|
|
}
|
|
|
|
|
|
static __inline__ void timespec_add(struct timespec* a, const struct timespec* b) {
|
|
a->tv_sec += b->tv_sec;
|
|
a->tv_nsec += b->tv_nsec;
|
|
if (a->tv_nsec >= 1000000000) {
|
|
a->tv_nsec -= 1000000000;
|
|
a->tv_sec += 1;
|
|
}
|
|
}
|
|
|
|
static __inline__ void timespec_sub(struct timespec* a, const struct timespec* b) {
|
|
a->tv_sec -= b->tv_sec;
|
|
a->tv_nsec -= b->tv_nsec;
|
|
if (a->tv_nsec < 0) {
|
|
a->tv_nsec += 1000000000;
|
|
a->tv_sec -= 1;
|
|
}
|
|
}
|
|
|
|
static __inline__ void timespec_zero(struct timespec* a) {
|
|
a->tv_sec = a->tv_nsec = 0;
|
|
}
|
|
|
|
static __inline__ int timespec_is_zero(const struct timespec* a) {
|
|
return (a->tv_sec == 0 && a->tv_nsec == 0);
|
|
}
|
|
|
|
static __inline__ int timespec_cmp(const struct timespec* a, const struct timespec* b) {
|
|
if (a->tv_sec < b->tv_sec) return -1;
|
|
if (a->tv_sec > b->tv_sec) return +1;
|
|
if (a->tv_nsec < b->tv_nsec) return -1;
|
|
if (a->tv_nsec > b->tv_nsec) return +1;
|
|
return 0;
|
|
}
|
|
|
|
static __inline__ int timespec_cmp0(const struct timespec* a) {
|
|
if (a->tv_sec < 0) return -1;
|
|
if (a->tv_sec > 0) return +1;
|
|
if (a->tv_nsec < 0) return -1;
|
|
if (a->tv_nsec > 0) return +1;
|
|
return 0;
|
|
}
|
|
|
|
/** POSIX TIMERS APIs */
|
|
|
|
extern int __timer_create(clockid_t, struct sigevent*, timer_t*);
|
|
extern int __timer_delete(timer_t);
|
|
extern int __timer_gettime(timer_t, struct itimerspec*);
|
|
extern int __timer_settime(timer_t, int, const struct itimerspec*, struct itimerspec*);
|
|
extern int __timer_getoverrun(timer_t);
|
|
|
|
static void* timer_thread_start(void*);
|
|
|
|
int timer_create(clockid_t clock_id, struct sigevent* evp, timer_t* timer_id) {
|
|
// If not a SIGEV_THREAD timer, the kernel can handle it without our help.
|
|
if (__predict_true(evp == NULL || evp->sigev_notify != SIGEV_THREAD)) {
|
|
return __timer_create(clock_id, evp, timer_id);
|
|
}
|
|
|
|
// Check arguments.
|
|
if (evp->sigev_notify_function == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Check that the clock id is supported by the kernel.
|
|
struct timespec dummy;
|
|
if (clock_gettime(clock_id, &dummy) < 0 && errno == EINVAL) {
|
|
return -1;
|
|
}
|
|
|
|
// Create a new timer and its thread.
|
|
// TODO: use a single global thread for all timers.
|
|
thr_timer_table_t* table = __timer_table_get();
|
|
thr_timer_t* timer = thr_timer_table_alloc(table);
|
|
if (timer == NULL) {
|
|
errno = ENOMEM;
|
|
return -1;
|
|
}
|
|
|
|
// Copy the thread attributes.
|
|
if (evp->sigev_notify_attributes == NULL) {
|
|
pthread_attr_init(&timer->attributes);
|
|
} else {
|
|
timer->attributes = ((pthread_attr_t*) evp->sigev_notify_attributes)[0];
|
|
}
|
|
|
|
// Posix says that the default is PTHREAD_CREATE_DETACHED and
|
|
// that PTHREAD_CREATE_JOINABLE has undefined behavior.
|
|
// So simply always use DETACHED :-)
|
|
pthread_attr_setdetachstate(&timer->attributes, PTHREAD_CREATE_DETACHED);
|
|
|
|
timer->callback = evp->sigev_notify_function;
|
|
timer->value = evp->sigev_value;
|
|
timer->clock = clock_id;
|
|
|
|
pthread_mutex_init(&timer->mutex, NULL);
|
|
pthread_cond_init(&timer->cond, NULL);
|
|
|
|
timer->done = 0;
|
|
timer->stopped = 0;
|
|
timer->expires.tv_sec = timer->expires.tv_nsec = 0;
|
|
timer->period.tv_sec = timer->period.tv_nsec = 0;
|
|
timer->overruns = 0;
|
|
|
|
// Create the thread.
|
|
int rc = pthread_create(&timer->thread, &timer->attributes, timer_thread_start, timer);
|
|
if (rc != 0) {
|
|
thr_timer_table_free(table, timer);
|
|
errno = rc;
|
|
return -1;
|
|
}
|
|
|
|
*timer_id = timer->id;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
timer_delete( timer_t id )
|
|
{
|
|
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) )
|
|
return __timer_delete( id );
|
|
else
|
|
{
|
|
thr_timer_table_t* table = __timer_table_get();
|
|
thr_timer_t* timer = thr_timer_table_from_id(table, id, 1);
|
|
|
|
if (timer == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* tell the timer's thread to stop */
|
|
thr_timer_lock(timer);
|
|
timer->done = 1;
|
|
pthread_cond_signal( &timer->cond );
|
|
thr_timer_unlock(timer);
|
|
|
|
/* NOTE: the thread will call __timer_table_free() to free the
|
|
* timer object. the '1' parameter to thr_timer_table_from_id
|
|
* above ensured that the object and its timer_id cannot be
|
|
* reused before that.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* return the relative time until the next expiration, or 0 if
|
|
* the timer is disarmed */
|
|
static void
|
|
timer_gettime_internal( thr_timer_t* timer,
|
|
struct itimerspec* spec)
|
|
{
|
|
struct timespec diff;
|
|
|
|
diff = timer->expires;
|
|
if (!timespec_is_zero(&diff))
|
|
{
|
|
struct timespec now;
|
|
|
|
clock_gettime( timer->clock, &now );
|
|
timespec_sub(&diff, &now);
|
|
|
|
/* in case of overrun, return 0 */
|
|
if (timespec_cmp0(&diff) < 0) {
|
|
timespec_zero(&diff);
|
|
}
|
|
}
|
|
|
|
spec->it_value = diff;
|
|
spec->it_interval = timer->period;
|
|
}
|
|
|
|
|
|
int
|
|
timer_gettime( timer_t id, struct itimerspec* ospec )
|
|
{
|
|
if (ospec == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
|
|
return __timer_gettime( id, ospec );
|
|
} else {
|
|
thr_timer_t* timer = thr_timer_from_id(id);
|
|
|
|
if (timer == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
thr_timer_lock(timer);
|
|
timer_gettime_internal( timer, ospec );
|
|
thr_timer_unlock(timer);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
timer_settime( timer_t id,
|
|
int flags,
|
|
const struct itimerspec* spec,
|
|
struct itimerspec* ospec )
|
|
{
|
|
if (spec == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
|
|
return __timer_settime( id, flags, spec, ospec );
|
|
} else {
|
|
thr_timer_t* timer = thr_timer_from_id(id);
|
|
struct timespec expires, now;
|
|
|
|
if (timer == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
thr_timer_lock(timer);
|
|
|
|
/* return current timer value if ospec isn't NULL */
|
|
if (ospec != NULL) {
|
|
timer_gettime_internal(timer, ospec );
|
|
}
|
|
|
|
/* compute next expiration time. note that if the
|
|
* new it_interval is 0, we should disarm the timer
|
|
*/
|
|
expires = spec->it_value;
|
|
if (!timespec_is_zero(&expires)) {
|
|
clock_gettime( timer->clock, &now );
|
|
if (!(flags & TIMER_ABSTIME)) {
|
|
timespec_add(&expires, &now);
|
|
} else {
|
|
if (timespec_cmp(&expires, &now) < 0)
|
|
expires = now;
|
|
}
|
|
}
|
|
timer->expires = expires;
|
|
timer->period = spec->it_interval;
|
|
thr_timer_unlock( timer );
|
|
|
|
/* signal the change to the thread */
|
|
pthread_cond_signal( &timer->cond );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
timer_getoverrun(timer_t id)
|
|
{
|
|
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
|
|
return __timer_getoverrun( id );
|
|
} else {
|
|
thr_timer_t* timer = thr_timer_from_id(id);
|
|
int result;
|
|
|
|
if (timer == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
thr_timer_lock(timer);
|
|
result = timer->overruns;
|
|
thr_timer_unlock(timer);
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
static void* timer_thread_start(void* arg) {
|
|
thr_timer_t* timer = arg;
|
|
|
|
thr_timer_lock(timer);
|
|
|
|
// Give this thread a meaningful name.
|
|
char name[32];
|
|
snprintf(name, sizeof(name), "POSIX interval timer 0x%08x", timer->id);
|
|
pthread_setname_np(pthread_self(), name);
|
|
|
|
// We loop until timer->done is set in timer_delete().
|
|
while (!timer->done) {
|
|
struct timespec expires = timer->expires;
|
|
struct timespec period = timer->period;
|
|
|
|
// If the timer is stopped or disarmed, wait indefinitely
|
|
// for a state change from timer_settime/_delete/_start_stop.
|
|
if (timer->stopped || timespec_is_zero(&expires)) {
|
|
pthread_cond_wait(&timer->cond, &timer->mutex);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we need to do a timed wait until either a
|
|
// state change of the timer expiration time.
|
|
struct timespec now;
|
|
clock_gettime(timer->clock, &now);
|
|
|
|
if (timespec_cmp(&expires, &now) > 0) {
|
|
// Cool, there was no overrun, so compute the
|
|
// relative timeout as 'expires - now', then wait.
|
|
struct timespec diff = expires;
|
|
timespec_sub(&diff, &now);
|
|
|
|
int ret = __pthread_cond_timedwait_relative(&timer->cond, &timer->mutex, &diff);
|
|
|
|
// If we didn't time out, it means that a state change
|
|
// occurred, so loop to take care of it.
|
|
if (ret != ETIMEDOUT) {
|
|
continue;
|
|
}
|
|
} else {
|
|
// Overrun was detected before we could wait!
|
|
if (!timespec_is_zero(&period)) {
|
|
// For periodic timers, compute total overrun count.
|
|
do {
|
|
timespec_add(&expires, &period);
|
|
if (timer->overruns < DELAYTIMER_MAX) {
|
|
timer->overruns += 1;
|
|
}
|
|
} while (timespec_cmp(&expires, &now) < 0);
|
|
|
|
// Backtrack the last one, because we're going to
|
|
// add the same value just a bit later.
|
|
timespec_sub(&expires, &period);
|
|
} else {
|
|
// For non-periodic timers, things are simple.
|
|
timer->overruns = 1;
|
|
}
|
|
}
|
|
|
|
// If we get here, a timeout was detected.
|
|
// First reload/disarm the timer as needed.
|
|
if (!timespec_is_zero(&period)) {
|
|
timespec_add(&expires, &period);
|
|
} else {
|
|
timespec_zero(&expires);
|
|
}
|
|
timer->expires = expires;
|
|
|
|
// Now call the timer callback function. Release the
|
|
// lock to allow the function to modify the timer setting
|
|
// or call timer_getoverrun().
|
|
// NOTE: at this point we trust the callback not to be a
|
|
// total moron and pthread_kill() the timer thread
|
|
thr_timer_unlock(timer);
|
|
timer->callback(timer->value);
|
|
thr_timer_lock(timer);
|
|
|
|
// Now clear the overruns counter. it only makes sense
|
|
// within the callback.
|
|
timer->overruns = 0;
|
|
}
|
|
|
|
thr_timer_unlock(timer);
|
|
|
|
// Free the timer object.
|
|
thr_timer_table_free(__timer_table_get(), timer);
|
|
|
|
return NULL;
|
|
}
|