android_bionic/libc/bionic/pthread_key.cpp

192 lines
7.9 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <pthread.h>
#include <stdatomic.h>
#include "private/bionic_defs.h"
#include "private/bionic_tls.h"
#include "pthread_internal.h"
typedef void (*key_destructor_t)(void*);
#define SEQ_KEY_IN_USE_BIT 0
#define SEQ_INCREMENT_STEP (1 << SEQ_KEY_IN_USE_BIT)
// pthread_key_internal_t records the use of each pthread key slot:
// seq records the state of the slot.
// bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the
// pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use
// a sequence number instead of a boolean value here is that when the key slot is deleted and
// reused for a new key, pthread_getspecific will not return stale data.
// key_destructor records the destructor called at thread exit.
struct pthread_key_internal_t {
atomic_uintptr_t seq;
atomic_uintptr_t key_destructor;
};
static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT];
static inline bool SeqOfKeyInUse(uintptr_t seq) {
return seq & (1 << SEQ_KEY_IN_USE_BIT);
}
#define KEY_VALID_FLAG (1 << 31)
static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast<pthread_key_t>(-1) < 0,
"pthread_key_t should be typedef to int");
static inline bool KeyInValidRange(pthread_key_t key) {
// key < 0 means bit 31 is set.
// Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT.
return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT));
}
static inline pthread_key_data_t* get_thread_key_data() {
return __get_bionic_tls().key_data;
}
// Called from pthread_exit() to remove all pthread keys. This must call the destructor of
// all keys that have a non-NULL data value and a non-NULL destructor.
__LIBC_HIDDEN__ void pthread_key_clean_all() {
// Because destructors can do funky things like deleting/creating other keys,
// we need to implement this in a loop.
pthread_key_data_t* key_data = get_thread_key_data();
for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
size_t called_destructor_count = 0;
for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != nullptr) {
// Other threads may be calling pthread_key_delete/pthread_key_create while current thread
// is exiting. So we need to ensure we read the right key_destructor.
// We can rely on a user-established happens-before relationship between the creation and
// use of pthread key to ensure that we're not getting an earlier key_destructor.
// To avoid using the key_destructor of the newly created key in the same slot, we need to
// recheck the sequence number after reading key_destructor. As a result, we either see the
// right key_destructor, or the sequence number must have changed when we reread it below.
key_destructor_t key_destructor = reinterpret_cast<key_destructor_t>(
atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed));
if (key_destructor == nullptr) {
continue;
}
atomic_thread_fence(memory_order_acquire);
if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) {
continue;
}
// We need to clear the key data now, this will prevent the destructor (or a later one)
// from seeing the old value if it calls pthread_getspecific().
// We don't do this if 'key_destructor == NULL' just in case another destructor
// function is responsible for manually releasing the corresponding data.
void* data = key_data[i].data;
key_data[i].data = nullptr;
(*key_destructor)(data);
++called_destructor_count;
}
}
// If we didn't call any destructors, there is no need to check the pthread keys again.
if (called_destructor_count == 0) {
break;
}
}
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
while (!SeqOfKeyInUse(seq)) {
if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
atomic_store(&key_map[i].key_destructor, reinterpret_cast<uintptr_t>(key_destructor));
*key = i | KEY_VALID_FLAG;
return 0;
}
}
}
return EAGAIN;
}
// Deletes a pthread_key_t. note that the standard mandates that this does
// not call the destructors for non-NULL key values. Instead, it is the
// responsibility of the caller to properly dispose of the corresponding data
// and resources, using any means it finds suitable.
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_key_delete(pthread_key_t key) {
if (__predict_false(!KeyInValidRange(key))) {
return EINVAL;
}
key &= ~KEY_VALID_FLAG;
// Increase seq to invalidate values in all threads.
uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
if (SeqOfKeyInUse(seq)) {
if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
return 0;
}
}
return EINVAL;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
void* pthread_getspecific(pthread_key_t key) {
if (__predict_false(!KeyInValidRange(key))) {
return nullptr;
}
key &= ~KEY_VALID_FLAG;
uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
pthread_key_data_t* data = &get_thread_key_data()[key];
// It is user's responsibility to synchornize between the creation and use of pthread keys,
// so we use memory_order_relaxed when checking the sequence number.
if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) {
return data->data;
}
// We arrive here when current thread holds the seq of an deleted pthread key. So the
// data is for the deleted pthread key, and should be cleared.
data->data = nullptr;
return nullptr;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_setspecific(pthread_key_t key, const void* ptr) {
if (__predict_false(!KeyInValidRange(key))) {
return EINVAL;
}
key &= ~KEY_VALID_FLAG;
uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
if (__predict_true(SeqOfKeyInUse(seq))) {
pthread_key_data_t* data = &get_thread_key_data()[key];
data->seq = seq;
data->data = const_cast<void*>(ptr);
return 0;
}
return EINVAL;
}