android_bionic/libc/bionic/malloc_heapprofd.cpp

468 lines
19 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_STATIC)
#error This file should not be compiled for static targets.
#endif
#include <dlfcn.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <platform/bionic/malloc.h>
#include <private/bionic_config.h>
#include <private/bionic_malloc_dispatch.h>
#include <sys/system_properties.h>
#include "gwp_asan_wrappers.h"
#include "malloc_common.h"
#include "malloc_common_dynamic.h"
#include "malloc_heapprofd.h"
#include "malloc_limit.h"
// Installing heapprofd hooks is a multi step process, as outlined below.
//
// The incremental hooking and a dedicated task thread are used since we cannot
// do heavy work within a signal handler, or when blocking a malloc invocation.
//
// +--->+-------------+------------------+
// | +->+kInitialState+----------------+ | malloc functions are not intercepted in any way.
// | | +-------+-----+ | |
// | | | | |
// | | v | |
// | | +-------+----------------+ | | currently installing the ephemeral hooks.
// | | |kInstallingEphemeralHook|<--+ | |
// | | +-------+----------------+ | | |
// | | | | | |
// | | v | | |
// | | +-------+---------------+ | | | ephemeral hooks are installed. on the first call to
// | | |kEphemeralHookInstalled| | | | malloc these hooks spawn a thread that installs the
// | | +-------+---------------+ | | | heapprofd hooks.
// | | | | | |
// | | v | | |
// | | +-------+--------------+ | | | first call to malloc happened. the hooks are reset to
// | +--|kRemovingEphemeralHook| | | | kInitialState.
// | +----------------------+ | | |
// | | | |
// | | | |
// | +---------------+ | | | currently installing the heapprofd hook
// | |kInstallingHook|<-----------|-+ |
// | +-------+-------+ | |
// | | | |
// | v | |
// | +-------+------+ | | heapprofd hooks are installed. these forward calls to
// | |kHookInstalled|-------------+ | malloc / free / etc. to heapprofd_client.so.
// | +-------+------+ |
// | | |
// | v |
// | +-------+---------+ | currently resetting the hooks to default.
// |----+kUninstallingHook| |
// +-----------------+ |
// |
// |
// +------------------+ | malloc debug / malloc hooks are active. these take
// |kIncompatibleHooks+<------------+ precendence over heapprofd, so heapprofd will not get
// +------------------+ enabled. this is a terminal state.
//
enum MallocHeapprofdState : uint8_t {
kInitialState,
kInstallingEphemeralHook,
kEphemeralHookInstalled,
kRemovingEphemeralHook,
kInstallingHook,
kHookInstalled,
kUninstallingHook,
kIncompatibleHooks
};
enum ModifyGlobalsMode {
kWithLock, // all calls to MaybeModifyGlobals with kWithLock will serialise. they can fail
// due to a concurrent call with kWithoutLock.
kWithoutLock // calls to MaybeModifyGlobals with kWithoutLock do not serialise. they can fail
// due to concurrent calls with kWithoutLock or kWithLock.
};
// Provide mutual exclusion so no two threads try to modify the globals at the same time.
template <typename Fn>
bool MaybeModifyGlobals(ModifyGlobalsMode mode, Fn f) {
bool success = false;
if (mode == kWithLock) {
pthread_mutex_lock(&gGlobalsMutateLock);
}
// As we have grabbed the mutex, the following condition should always hold, except
// if we are currently running HandleHeapprofdSignal.
if (!atomic_exchange(&gGlobalsMutating, true)) {
f();
success = true;
atomic_store(&gGlobalsMutating, false);
} else {
error_log("%s: heapprofd client: concurrent modification.", getprogname());
}
if (mode == kWithLock) {
pthread_mutex_unlock(&gGlobalsMutateLock);
}
return success;
}
extern "C" void* MallocInitHeapprofdHook(size_t);
static constexpr char kHeapprofdSharedLib[] = "heapprofd_client.so";
static constexpr char kHeapprofdPrefix[] = "heapprofd";
static constexpr char kHeapprofdPropertyEnable[] = "heapprofd.enable";
constexpr char kHeapprofdProgramPropertyPrefix[] = "heapprofd.enable.";
constexpr size_t kHeapprofdProgramPropertyPrefixSize = sizeof(kHeapprofdProgramPropertyPrefix) - 1;
constexpr size_t kMaxCmdlineSize = 512;
// The handle returned by dlopen when previously loading the heapprofd
// hooks. nullptr if shared library has not been already been loaded.
static _Atomic (void*) gHeapprofdHandle = nullptr;
static _Atomic MallocHeapprofdState gHeapprofdState = kInitialState;
static bool GetHeapprofdProgramProperty(char* data, size_t size) {
if (size < kHeapprofdProgramPropertyPrefixSize) {
error_log("%s: Overflow constructing heapprofd property", getprogname());
return false;
}
memcpy(data, kHeapprofdProgramPropertyPrefix, kHeapprofdProgramPropertyPrefixSize);
int fd = open("/proc/self/cmdline", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
error_log("%s: Failed to open /proc/self/cmdline", getprogname());
return false;
}
char cmdline[kMaxCmdlineSize];
ssize_t rd = read(fd, cmdline, sizeof(cmdline) - 1);
close(fd);
if (rd == -1) {
error_log("%s: Failed to read /proc/self/cmdline", getprogname());
return false;
}
cmdline[rd] = '\0';
char* first_arg = static_cast<char*>(memchr(cmdline, '\0', rd));
if (first_arg == nullptr) {
error_log("%s: Overflow reading cmdline", getprogname());
return false;
}
// For consistency with what we do with Java app cmdlines, trim everything
// after the @ sign of the first arg.
char* first_at = static_cast<char*>(memchr(cmdline, '@', rd));
if (first_at != nullptr && first_at < first_arg) {
*first_at = '\0';
first_arg = first_at;
}
char* start = static_cast<char*>(memrchr(cmdline, '/', first_arg - cmdline));
if (start == first_arg) {
// The first argument ended in a slash.
error_log("%s: cmdline ends in /", getprogname());
return false;
} else if (start == nullptr) {
start = cmdline;
} else {
// Skip the /.
start++;
}
size_t name_size = static_cast<size_t>(first_arg - start);
if (name_size >= size - kHeapprofdProgramPropertyPrefixSize) {
error_log("%s: overflow constructing heapprofd property.", getprogname());
return false;
}
// + 1 to also copy the trailing null byte.
memcpy(data + kHeapprofdProgramPropertyPrefixSize, start, name_size + 1);
return true;
}
// Runtime triggering entry-point. Two possible call sites:
// * when receiving a profiling signal with a si_value indicating heapprofd.
// * when a Zygote child is marking itself as profileable, and there's a
// matching profiling request for this process (in which case heapprofd client
// is loaded synchronously).
// In both cases, the caller is responsible for verifying that the process is
// considered profileable.
// Previously installed default dispatch table, if it exists. This is used to
// load heapprofd properly when GWP-ASan was already installed. If GWP-ASan was
// already installed, heapprofd will take over the dispatch table, but will use
// GWP-ASan as the backing dispatch. Writes to this variable is atomically
// protected by MaybeModifyGlobals.
// Reads are not protected, so this is atomic. We cannot fail the call in
// MallocInitHeapprofdHook.
static _Atomic (const MallocDispatch*) gPreviousDefaultDispatchTable = nullptr;
static MallocDispatch gEphemeralDispatch;
void HandleHeapprofdSignal() {
if (atomic_load(&gHeapprofdState) == kIncompatibleHooks) {
error_log("%s: not enabling heapprofd, malloc_debug/malloc_hooks are enabled.", getprogname());
return;
}
// We cannot grab the mutex here, as this is used in a signal handler.
MaybeModifyGlobals(kWithoutLock, [] {
MallocHeapprofdState expected = kInitialState;
// If hooks are already installed, we still want to install ephemeral hooks to retrigger
// heapprofd client initialization.
MallocHeapprofdState expected2 = kHookInstalled;
if (atomic_compare_exchange_strong(&gHeapprofdState, &expected,
kInstallingEphemeralHook) ||
atomic_compare_exchange_strong(&gHeapprofdState, &expected2,
kInstallingEphemeralHook)) {
const MallocDispatch* default_dispatch = GetDefaultDispatchTable();
// Below, we initialize heapprofd lazily by redirecting libc's malloc() to
// call MallocInitHeapprofdHook, which spawns off a thread and initializes
// heapprofd. During the short period between now and when heapprofd is
// initialized, allocations may need to be serviced. There are three
// possible configurations:
if (default_dispatch == nullptr) {
// 1. No malloc hooking has been done (heapprofd, GWP-ASan, etc.). In
// this case, everything but malloc() should come from the system
// allocator.
atomic_store(&gPreviousDefaultDispatchTable, nullptr);
gEphemeralDispatch = *NativeAllocatorDispatch();
} else if (DispatchIsGwpAsan(default_dispatch)) {
// 2. GWP-ASan was installed. We should use GWP-ASan for everything but
// malloc() in the interim period before heapprofd is properly
// installed. After heapprofd is finished installing, we will use
// GWP-ASan as heapprofd's backing allocator to allow heapprofd and
// GWP-ASan to coexist.
atomic_store(&gPreviousDefaultDispatchTable, default_dispatch);
gEphemeralDispatch = *default_dispatch;
} else {
// 3. It may be possible at this point in time that heapprofd is
// *already* the default dispatch, and as such we don't want to use
// heapprofd as the backing store for itself (otherwise infinite
// recursion occurs). We will use the system allocator functions. Note:
// We've checked that no other malloc interceptors are being used by
// validating `gHeapprofdIncompatibleHooks` above, so we don't need to
// worry about that case here.
atomic_store(&gPreviousDefaultDispatchTable, nullptr);
gEphemeralDispatch = *NativeAllocatorDispatch();
}
// Now, replace the malloc function so that the next call to malloc() will
// initialize heapprofd.
gEphemeralDispatch.malloc = MallocInitHeapprofdHook;
// And finally, install these new malloc-family interceptors.
__libc_globals.mutate([](libc_globals* globals) {
atomic_store(&globals->default_dispatch_table, &gEphemeralDispatch);
if (!MallocLimitInstalled()) {
atomic_store(&globals->current_dispatch_table, &gEphemeralDispatch);
}
});
atomic_store(&gHeapprofdState, kEphemeralHookInstalled);
} else {
error_log("%s: heapprofd: failed to transition kInitialState -> kInstallingEphemeralHook. "
"current state (possible race): %d", getprogname(), expected2);
}
});
// Otherwise, we're racing against malloc_limit's enable logic (at most once
// per process, and a niche feature). This is highly unlikely, so simply give
// up if it does happen.
}
bool HeapprofdShouldLoad() {
// First check for heapprofd.enable. If it is set to "all", enable
// heapprofd for all processes. Otherwise, check heapprofd.enable.${prog},
// if it is set and not 0, enable heap profiling for this process.
char property_value[PROP_VALUE_MAX];
if (__system_property_get(kHeapprofdPropertyEnable, property_value) == 0) {
return false;
}
if (strcmp(property_value, "all") == 0) {
return true;
}
char program_property[kHeapprofdProgramPropertyPrefixSize + kMaxCmdlineSize];
if (!GetHeapprofdProgramProperty(program_property,
sizeof(program_property))) {
return false;
}
if (__system_property_get(program_property, property_value) == 0) {
return false;
}
return property_value[0] != '\0';
}
void HeapprofdRememberHookConflict() {
atomic_store(&gHeapprofdState, kIncompatibleHooks);
}
static void CommonInstallHooks(libc_globals* globals) {
void* impl_handle = atomic_load(&gHeapprofdHandle);
bool reusing_handle = impl_handle != nullptr;
if (!reusing_handle) {
impl_handle = LoadSharedLibrary(kHeapprofdSharedLib, kHeapprofdPrefix, &globals->malloc_dispatch_table);
if (impl_handle == nullptr) {
return;
}
} else if (!InitSharedLibrary(impl_handle, kHeapprofdSharedLib, kHeapprofdPrefix, &globals->malloc_dispatch_table)) {
return;
}
// Before we set the new default_dispatch_table in FinishInstallHooks, save
// the previous dispatch table. If DispatchReset() gets called later, we want
// to be able to restore the dispatch. We're still under
// MaybeModifyGlobals locks at this point.
atomic_store(&gPreviousDefaultDispatchTable, GetDefaultDispatchTable());
if (FinishInstallHooks(globals, nullptr, kHeapprofdPrefix)) {
atomic_store(&gHeapprofdHandle, impl_handle);
} else if (!reusing_handle) {
dlclose(impl_handle);
}
}
void HeapprofdInstallHooksAtInit(libc_globals* globals) {
MaybeModifyGlobals(kWithoutLock, [globals] {
MallocHeapprofdState expected = kInitialState;
if (atomic_compare_exchange_strong(&gHeapprofdState, &expected, kInstallingHook)) {
CommonInstallHooks(globals);
atomic_store(&gHeapprofdState, kHookInstalled);
} else {
error_log("%s: heapprofd: failed to transition kInitialState -> kInstallingHook. "
"current state (possible race): %d", getprogname(), expected);
}
});
}
static void* InitHeapprofd(void*) {
MaybeModifyGlobals(kWithLock, [] {
MallocHeapprofdState expected = kInitialState;
if (atomic_compare_exchange_strong(&gHeapprofdState, &expected, kInstallingHook)) {
__libc_globals.mutate([](libc_globals* globals) {
CommonInstallHooks(globals);
});
atomic_store(&gHeapprofdState, kHookInstalled);
} else {
error_log("%s: heapprofd: failed to transition kInitialState -> kInstallingHook. "
"current state (possible race): %d", getprogname(), expected);
}
});
return nullptr;
}
extern "C" void* MallocInitHeapprofdHook(size_t bytes) {
MaybeModifyGlobals(kWithLock, [] {
MallocHeapprofdState expected = kEphemeralHookInstalled;
if (atomic_compare_exchange_strong(&gHeapprofdState, &expected, kRemovingEphemeralHook)) {
__libc_globals.mutate([](libc_globals* globals) {
const MallocDispatch* previous_dispatch = atomic_load(&gPreviousDefaultDispatchTable);
atomic_store(&globals->default_dispatch_table, previous_dispatch);
if (!MallocLimitInstalled()) {
atomic_store(&globals->current_dispatch_table, previous_dispatch);
}
});
atomic_store(&gHeapprofdState, kInitialState);
pthread_t thread_id;
if (pthread_create(&thread_id, nullptr, InitHeapprofd, nullptr) != 0) {
error_log("%s: heapprofd: failed to pthread_create.", getprogname());
} else if (pthread_setname_np(thread_id, "heapprofdinit") != 0) {
error_log("%s: heapprod: failed to pthread_setname_np", getprogname());
} else if (pthread_detach(thread_id) != 0) {
error_log("%s: heapprofd: failed to pthread_detach", getprogname());
}
} else {
warning_log("%s: heapprofd: could not transition kEphemeralHookInstalled -> "
"kRemovingEphemeralHook. current state (possible race): %d. this can be benign "
"if two threads try this transition at the same time", getprogname(),
expected);
}
});
// If we had a previous dispatch table, use that to service the allocation,
// otherwise fall back to the native allocator.
// This could be modified by a concurrent HandleHeapprofdSignal, but that is
// benign as we will dispatch to the ephemeral handler, which will then dispatch
// to the underlying one.
const MallocDispatch* previous_dispatch = atomic_load(&gPreviousDefaultDispatchTable);
if (previous_dispatch) {
return previous_dispatch->malloc(bytes);
}
return NativeAllocatorDispatch()->malloc(bytes);
}
bool HeapprofdInitZygoteChildProfiling() {
// Conditionally start "from startup" profiling.
if (HeapprofdShouldLoad()) {
// Directly call the signal handler codepath (properly protects against
// concurrent invocations).
HandleHeapprofdSignal();
}
return true;
}
static bool DispatchReset() {
if (atomic_load(&gHeapprofdState) == kInitialState) {
return true;
}
bool success = false;
MaybeModifyGlobals(kWithLock, [&success] {
MallocHeapprofdState expected = kHookInstalled;
if(atomic_compare_exchange_strong(&gHeapprofdState, &expected, kUninstallingHook)){
__libc_globals.mutate([](libc_globals* globals) {
const MallocDispatch* previous_dispatch = atomic_load(&gPreviousDefaultDispatchTable);
atomic_store(&globals->default_dispatch_table, previous_dispatch);
if (!MallocLimitInstalled()) {
atomic_store(&globals->current_dispatch_table, previous_dispatch);
}
});
atomic_store(&gHeapprofdState, kInitialState);
success = true;
} else {
error_log("%s: heapprofd: failed to transition kHookInstalled -> kUninstallingHook. "
"current state (possible race): %d", getprogname(),
expected);
}
});
if (!success) {
errno = EAGAIN;
}
return success;
}
bool HeapprofdMallopt(int opcode, void* arg, size_t arg_size) {
if (opcode == M_RESET_HOOKS) {
if (arg != nullptr || arg_size != 0) {
errno = EINVAL;
return false;
}
return DispatchReset();
}
errno = ENOTSUP;
return false;
}