android_bionic/libc/bionic/bionic_elf_tls.cpp

367 lines
14 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "private/bionic_elf_tls.h"
#include <async_safe/log.h>
#include <string.h>
#include <sys/param.h>
#include <unistd.h>
#include "private/ScopedRWLock.h"
#include "private/ScopedSignalBlocker.h"
#include "private/bionic_globals.h"
#include "platform/bionic/macros.h"
#include "private/bionic_tls.h"
#include "pthread_internal.h"
// Every call to __tls_get_addr needs to check the generation counter, so
// accesses to the counter need to be as fast as possible. Keep a copy of it in
// a hidden variable, which can be accessed without using the GOT. The linker
// will update this variable when it updates its counter.
//
// To allow the linker to update this variable, libc.so's constructor passes its
// address to the linker. To accommodate a possible __tls_get_addr call before
// libc.so's constructor, this local copy is initialized to SIZE_MAX, forcing
// __tls_get_addr to initially use the slow path.
__LIBC_HIDDEN__ _Atomic(size_t) __libc_tls_generation_copy = SIZE_MAX;
// Search for a TLS segment in the given phdr table. Returns true if it has a
// TLS segment and false otherwise.
bool __bionic_get_tls_segment(const ElfW(Phdr)* phdr_table, size_t phdr_count,
ElfW(Addr) load_bias, TlsSegment* out) {
for (size_t i = 0; i < phdr_count; ++i) {
const ElfW(Phdr)& phdr = phdr_table[i];
if (phdr.p_type == PT_TLS) {
*out = TlsSegment {
phdr.p_memsz,
phdr.p_align,
reinterpret_cast<void*>(load_bias + phdr.p_vaddr),
phdr.p_filesz,
};
return true;
}
}
return false;
}
// Return true if the alignment of a TLS segment is a valid power-of-two. Also
// cap the alignment if it's too high.
bool __bionic_check_tls_alignment(size_t* alignment) {
// N.B. The size does not need to be a multiple of the alignment. With
// ld.bfd (or after using binutils' strip), the TLS segment's size isn't
// rounded up.
if (*alignment == 0 || !powerof2(*alignment)) {
return false;
}
// Bionic only respects TLS alignment up to one page.
*alignment = MIN(*alignment, PAGE_SIZE);
return true;
}
size_t StaticTlsLayout::offset_thread_pointer() const {
return offset_bionic_tcb_ + (-MIN_TLS_SLOT * sizeof(void*));
}
// Reserves space for the Bionic TCB and the executable's TLS segment. Returns
// the offset of the executable's TLS segment.
size_t StaticTlsLayout::reserve_exe_segment_and_tcb(const TlsSegment* exe_segment,
const char* progname __attribute__((unused))) {
// Special case: if the executable has no TLS segment, then just allocate a
// TCB and skip the minimum alignment check on ARM.
if (exe_segment == nullptr) {
offset_bionic_tcb_ = reserve_type<bionic_tcb>();
return 0;
}
#if defined(__arm__) || defined(__aarch64__)
// First reserve enough space for the TCB before the executable segment.
reserve(sizeof(bionic_tcb), 1);
// Then reserve the segment itself.
const size_t result = reserve(exe_segment->size, exe_segment->alignment);
// The variant 1 ABI that ARM linkers follow specifies a 2-word TCB between
// the thread pointer and the start of the executable's TLS segment, but both
// the thread pointer and the TLS segment are aligned appropriately for the
// TLS segment. Calculate the distance between the thread pointer and the
// EXE's segment.
const size_t exe_tpoff = __BIONIC_ALIGN(sizeof(void*) * 2, exe_segment->alignment);
const size_t min_bionic_alignment = BIONIC_ROUND_UP_POWER_OF_2(MAX_TLS_SLOT) * sizeof(void*);
if (exe_tpoff < min_bionic_alignment) {
async_safe_fatal("error: \"%s\": executable's TLS segment is underaligned: "
"alignment is %zu, needs to be at least %zu for %s Bionic",
progname, exe_segment->alignment, min_bionic_alignment,
(sizeof(void*) == 4 ? "ARM" : "ARM64"));
}
offset_bionic_tcb_ = result - exe_tpoff - (-MIN_TLS_SLOT * sizeof(void*));
return result;
#elif defined(__i386__) || defined(__x86_64__)
// x86 uses variant 2 TLS layout. The executable's segment is located just
// before the TCB.
static_assert(MIN_TLS_SLOT == 0, "First slot of bionic_tcb must be slot #0 on x86");
const size_t exe_size = round_up_with_overflow_check(exe_segment->size, exe_segment->alignment);
reserve(exe_size, 1);
const size_t max_align = MAX(alignof(bionic_tcb), exe_segment->alignment);
offset_bionic_tcb_ = reserve(sizeof(bionic_tcb), max_align);
return offset_bionic_tcb_ - exe_size;
#else
#error "Unrecognized architecture"
#endif
}
void StaticTlsLayout::reserve_bionic_tls() {
offset_bionic_tls_ = reserve_type<bionic_tls>();
}
void StaticTlsLayout::finish_layout() {
// Round the offset up to the alignment.
offset_ = round_up_with_overflow_check(offset_, alignment_);
if (overflowed_) {
async_safe_fatal("error: TLS segments in static TLS overflowed");
}
}
// The size is not required to be a multiple of the alignment. The alignment
// must be a positive power-of-two.
size_t StaticTlsLayout::reserve(size_t size, size_t alignment) {
offset_ = round_up_with_overflow_check(offset_, alignment);
const size_t result = offset_;
if (__builtin_add_overflow(offset_, size, &offset_)) overflowed_ = true;
alignment_ = MAX(alignment_, alignment);
return result;
}
size_t StaticTlsLayout::round_up_with_overflow_check(size_t value, size_t alignment) {
const size_t old_value = value;
value = __BIONIC_ALIGN(value, alignment);
if (value < old_value) overflowed_ = true;
return value;
}
// Copy each TLS module's initialization image into a newly-allocated block of
// static TLS memory. To reduce dirty pages, this function only writes to pages
// within the static TLS that need initialization. The memory should already be
// zero-initialized on entry.
void __init_static_tls(void* static_tls) {
// The part of the table we care about (i.e. static TLS modules) never changes
// after startup, but we still need the mutex because the table could grow,
// moving the initial part. If this locking is too slow, we can duplicate the
// static part of the table.
TlsModules& modules = __libc_shared_globals()->tls_modules;
ScopedSignalBlocker ssb;
ScopedReadLock locker(&modules.rwlock);
for (size_t i = 0; i < modules.module_count; ++i) {
TlsModule& module = modules.module_table[i];
if (module.static_offset == SIZE_MAX) {
// All of the static modules come before all of the dynamic modules, so
// once we see the first dynamic module, we're done.
break;
}
if (module.segment.init_size == 0) {
// Skip the memcpy call for TLS segments with no initializer, which is
// common.
continue;
}
memcpy(static_cast<char*>(static_tls) + module.static_offset,
module.segment.init_ptr,
module.segment.init_size);
}
}
static inline size_t dtv_size_in_bytes(size_t module_count) {
return sizeof(TlsDtv) + module_count * sizeof(void*);
}
// Calculates the number of module slots to allocate in a new DTV. For small
// objects (up to 1KiB), the TLS allocator allocates memory in power-of-2 sizes,
// so for better space usage, ensure that the DTV size (header + slots) is a
// power of 2.
//
// The lock on TlsModules must be held.
static size_t calculate_new_dtv_count() {
size_t loaded_cnt = __libc_shared_globals()->tls_modules.module_count;
size_t bytes = dtv_size_in_bytes(MAX(1, loaded_cnt));
if (!powerof2(bytes)) {
bytes = BIONIC_ROUND_UP_POWER_OF_2(bytes);
}
return (bytes - sizeof(TlsDtv)) / sizeof(void*);
}
// This function must be called with signals blocked and a write lock on
// TlsModules held.
static void update_tls_dtv(bionic_tcb* tcb) {
const TlsModules& modules = __libc_shared_globals()->tls_modules;
BionicAllocator& allocator = __libc_shared_globals()->tls_allocator;
// Use the generation counter from the shared globals instead of the local
// copy, which won't be initialized yet if __tls_get_addr is called before
// libc.so's constructor.
if (__get_tcb_dtv(tcb)->generation == atomic_load(&modules.generation)) {
return;
}
const size_t old_cnt = __get_tcb_dtv(tcb)->count;
// If the DTV isn't large enough, allocate a larger one. Because a signal
// handler could interrupt the fast path of __tls_get_addr, we don't free the
// old DTV. Instead, we add the old DTV to a list, then free all of a thread's
// DTVs at thread-exit. Each time the DTV is reallocated, its size at least
// doubles.
if (modules.module_count > old_cnt) {
size_t new_cnt = calculate_new_dtv_count();
TlsDtv* const old_dtv = __get_tcb_dtv(tcb);
TlsDtv* const new_dtv = static_cast<TlsDtv*>(allocator.alloc(dtv_size_in_bytes(new_cnt)));
memcpy(new_dtv, old_dtv, dtv_size_in_bytes(old_cnt));
new_dtv->count = new_cnt;
new_dtv->next = old_dtv;
__set_tcb_dtv(tcb, new_dtv);
}
TlsDtv* const dtv = __get_tcb_dtv(tcb);
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
char* static_tls = reinterpret_cast<char*>(tcb) - layout.offset_bionic_tcb();
// Initialize static TLS modules and free unloaded modules.
for (size_t i = 0; i < dtv->count; ++i) {
if (i < modules.module_count) {
const TlsModule& mod = modules.module_table[i];
if (mod.static_offset != SIZE_MAX) {
dtv->modules[i] = static_tls + mod.static_offset;
continue;
}
if (mod.first_generation != kTlsGenerationNone &&
mod.first_generation <= dtv->generation) {
continue;
}
}
allocator.free(dtv->modules[i]);
dtv->modules[i] = nullptr;
}
dtv->generation = atomic_load(&modules.generation);
}
__attribute__((noinline)) static void* tls_get_addr_slow_path(const TlsIndex* ti) {
TlsModules& modules = __libc_shared_globals()->tls_modules;
bionic_tcb* tcb = __get_bionic_tcb();
// Block signals and lock TlsModules. We may need the allocator, so take
// a write lock.
ScopedSignalBlocker ssb;
ScopedWriteLock locker(&modules.rwlock);
update_tls_dtv(tcb);
TlsDtv* dtv = __get_tcb_dtv(tcb);
const size_t module_idx = __tls_module_id_to_idx(ti->module_id);
void* mod_ptr = dtv->modules[module_idx];
if (mod_ptr == nullptr) {
const TlsSegment& segment = modules.module_table[module_idx].segment;
mod_ptr = __libc_shared_globals()->tls_allocator.memalign(segment.alignment, segment.size);
if (segment.init_size > 0) {
memcpy(mod_ptr, segment.init_ptr, segment.init_size);
}
dtv->modules[module_idx] = mod_ptr;
}
return static_cast<char*>(mod_ptr) + ti->offset;
}
// Returns the address of a thread's TLS memory given a module ID and an offset
// into that module's TLS segment. This function is called on every access to a
// dynamic TLS variable on targets that don't use TLSDESC. arm64 uses TLSDESC,
// so it only calls this function on a thread's first access to a module's TLS
// segment.
//
// On most targets, this accessor function is __tls_get_addr and
// TLS_GET_ADDR_CCONV is unset. 32-bit x86 uses ___tls_get_addr instead and a
// regparm() calling convention.
extern "C" void* TLS_GET_ADDR(const TlsIndex* ti) TLS_GET_ADDR_CCONV {
TlsDtv* dtv = __get_tcb_dtv(__get_bionic_tcb());
// TODO: See if we can use a relaxed memory ordering here instead.
size_t generation = atomic_load(&__libc_tls_generation_copy);
if (__predict_true(generation == dtv->generation)) {
void* mod_ptr = dtv->modules[__tls_module_id_to_idx(ti->module_id)];
if (__predict_true(mod_ptr != nullptr)) {
return static_cast<char*>(mod_ptr) + ti->offset;
}
}
return tls_get_addr_slow_path(ti);
}
// This function frees:
// - TLS modules referenced by the current DTV.
// - The list of DTV objects associated with the current thread.
//
// The caller must have already blocked signals.
void __free_dynamic_tls(bionic_tcb* tcb) {
TlsModules& modules = __libc_shared_globals()->tls_modules;
BionicAllocator& allocator = __libc_shared_globals()->tls_allocator;
// If we didn't allocate any dynamic memory, skip out early without taking
// the lock.
TlsDtv* dtv = __get_tcb_dtv(tcb);
if (dtv->generation == kTlsGenerationNone) {
return;
}
// We need the write lock to use the allocator.
ScopedWriteLock locker(&modules.rwlock);
// First free everything in the current DTV.
for (size_t i = 0; i < dtv->count; ++i) {
if (i < modules.module_count && modules.module_table[i].static_offset != SIZE_MAX) {
// This module's TLS memory is allocated statically, so don't free it here.
continue;
}
allocator.free(dtv->modules[i]);
}
// Now free the thread's list of DTVs.
while (dtv->generation != kTlsGenerationNone) {
TlsDtv* next = dtv->next;
allocator.free(dtv);
dtv = next;
}
// Clear the DTV slot. The DTV must not be used again with this thread.
tcb->tls_slot(TLS_SLOT_DTV) = nullptr;
}