1285 lines
42 KiB
C++
1285 lines
42 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <libgen.h>
|
|
#include <limits.h>
|
|
#include <signal.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#include <chrono>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#ifndef TEMP_FAILURE_RETRY
|
|
|
|
/* Used to retry syscalls that can return EINTR. */
|
|
#define TEMP_FAILURE_RETRY(exp) ({ \
|
|
__typeof__(exp) _rc; \
|
|
do { \
|
|
_rc = (exp); \
|
|
} while (_rc == -1 && errno == EINTR); \
|
|
_rc; })
|
|
|
|
#endif
|
|
|
|
static std::string g_executable_path;
|
|
static int g_argc;
|
|
static char** g_argv;
|
|
static char** g_envp;
|
|
|
|
const std::string& get_executable_path() {
|
|
return g_executable_path;
|
|
}
|
|
|
|
int get_argc() {
|
|
return g_argc;
|
|
}
|
|
|
|
char** get_argv() {
|
|
return g_argv;
|
|
}
|
|
|
|
char** get_envp() {
|
|
return g_envp;
|
|
}
|
|
|
|
namespace testing {
|
|
namespace internal {
|
|
|
|
// Reuse of testing::internal::ColoredPrintf in gtest.
|
|
enum GTestColor {
|
|
COLOR_DEFAULT,
|
|
COLOR_RED,
|
|
COLOR_GREEN,
|
|
COLOR_YELLOW
|
|
};
|
|
|
|
void ColoredPrintf(GTestColor color, const char* fmt, ...);
|
|
|
|
} // namespace internal
|
|
} // namespace testing
|
|
|
|
using testing::internal::GTestColor;
|
|
using testing::internal::COLOR_DEFAULT;
|
|
using testing::internal::COLOR_RED;
|
|
using testing::internal::COLOR_GREEN;
|
|
using testing::internal::COLOR_YELLOW;
|
|
using testing::internal::ColoredPrintf;
|
|
|
|
constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS = 90000;
|
|
constexpr int DEFAULT_GLOBAL_TEST_RUN_SLOW_THRESHOLD_MS = 2000;
|
|
|
|
// The time each test can run before killed for the reason of timeout.
|
|
// It takes effect only with --isolate option.
|
|
static int global_test_run_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
|
|
|
|
// The time each test can run before be warned for too much running time.
|
|
// It takes effect only with --isolate option.
|
|
static int global_test_run_slow_threshold_ms = DEFAULT_GLOBAL_TEST_RUN_SLOW_THRESHOLD_MS;
|
|
|
|
// Return timeout duration for a test, in ms.
|
|
static int GetTimeoutMs(const std::string& /*test_name*/) {
|
|
return global_test_run_deadline_ms;
|
|
}
|
|
|
|
// Return threshold for calling a test slow, in ms.
|
|
static int GetSlowThresholdMs(const std::string& /*test_name*/) {
|
|
return global_test_run_slow_threshold_ms;
|
|
}
|
|
|
|
static void PrintHelpInfo() {
|
|
printf("Bionic Unit Test Options:\n"
|
|
" -j [JOB_COUNT] or -j[JOB_COUNT]\n"
|
|
" Run up to JOB_COUNT tests in parallel.\n"
|
|
" Use isolation mode, Run each test in a separate process.\n"
|
|
" If JOB_COUNT is not given, it is set to the count of available processors.\n"
|
|
" --no-isolate\n"
|
|
" Don't use isolation mode, run all tests in a single process.\n"
|
|
" --deadline=[TIME_IN_MS]\n"
|
|
" Run each test in no longer than [TIME_IN_MS] time.\n"
|
|
" Only valid in isolation mode. Default deadline is 90000 ms.\n"
|
|
" --slow-threshold=[TIME_IN_MS]\n"
|
|
" Test running longer than [TIME_IN_MS] will be called slow.\n"
|
|
" Only valid in isolation mode. Default slow threshold is 2000 ms.\n"
|
|
" --gtest-filter=POSITIVE_PATTERNS[-NEGATIVE_PATTERNS]\n"
|
|
" Used as a synonym for --gtest_filter option in gtest.\n"
|
|
"Default bionic unit test option is -j.\n"
|
|
"In isolation mode, you can send SIGQUIT to the parent process to show current\n"
|
|
"running tests, or send SIGINT to the parent process to stop testing and\n"
|
|
"clean up current running tests.\n"
|
|
"\n");
|
|
}
|
|
|
|
enum TestResult {
|
|
TEST_SUCCESS = 0,
|
|
TEST_FAILED,
|
|
TEST_TIMEOUT
|
|
};
|
|
|
|
class Test {
|
|
public:
|
|
Test() {} // For std::vector<Test>.
|
|
explicit Test(const char* name) : name_(name) {}
|
|
|
|
const std::string& GetName() const { return name_; }
|
|
|
|
void SetResult(TestResult result) { result_ = result; }
|
|
|
|
TestResult GetResult() const { return result_; }
|
|
TestResult GetExpectedResult() const {
|
|
return GetName().find("xfail") == 0 ? TEST_FAILED : TEST_SUCCESS;
|
|
}
|
|
|
|
void SetTestTime(int64_t elapsed_time_ns) { elapsed_time_ns_ = elapsed_time_ns; }
|
|
|
|
int64_t GetTestTime() const { return elapsed_time_ns_; }
|
|
|
|
void AppendTestOutput(const std::string& s) { output_ += s; }
|
|
|
|
const std::string& GetTestOutput() const { return output_; }
|
|
|
|
private:
|
|
const std::string name_;
|
|
TestResult result_;
|
|
int64_t elapsed_time_ns_;
|
|
std::string output_;
|
|
};
|
|
|
|
class TestCase {
|
|
public:
|
|
TestCase() {} // For std::vector<TestCase>.
|
|
explicit TestCase(const char* name) : name_(name) {}
|
|
|
|
const std::string& GetName() const { return name_; }
|
|
|
|
void AppendTest(const char* test_name) {
|
|
test_list_.push_back(Test(test_name));
|
|
}
|
|
|
|
size_t TestCount() const { return test_list_.size(); }
|
|
|
|
std::string GetTestName(size_t test_id) const {
|
|
VerifyTestId(test_id);
|
|
return name_ + "." + test_list_[test_id].GetName();
|
|
}
|
|
|
|
Test& GetTest(size_t test_id) {
|
|
VerifyTestId(test_id);
|
|
return test_list_[test_id];
|
|
}
|
|
|
|
const Test& GetTest(size_t test_id) const {
|
|
VerifyTestId(test_id);
|
|
return test_list_[test_id];
|
|
}
|
|
|
|
void SetTestResult(size_t test_id, TestResult result) {
|
|
VerifyTestId(test_id);
|
|
test_list_[test_id].SetResult(result);
|
|
}
|
|
|
|
TestResult GetTestResult(size_t test_id) const {
|
|
VerifyTestId(test_id);
|
|
return test_list_[test_id].GetResult();
|
|
}
|
|
|
|
TestResult GetExpectedTestResult(size_t test_id) const {
|
|
VerifyTestId(test_id);
|
|
return test_list_[test_id].GetExpectedResult();
|
|
}
|
|
|
|
bool GetTestSuccess(size_t test_id) const {
|
|
return GetTestResult(test_id) == GetExpectedTestResult(test_id);
|
|
}
|
|
|
|
void SetTestTime(size_t test_id, int64_t elapsed_time_ns) {
|
|
VerifyTestId(test_id);
|
|
test_list_[test_id].SetTestTime(elapsed_time_ns);
|
|
}
|
|
|
|
int64_t GetTestTime(size_t test_id) const {
|
|
VerifyTestId(test_id);
|
|
return test_list_[test_id].GetTestTime();
|
|
}
|
|
|
|
private:
|
|
void VerifyTestId(size_t test_id) const {
|
|
if(test_id >= test_list_.size()) {
|
|
fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id, test_list_.size());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const std::string name_;
|
|
std::vector<Test> test_list_;
|
|
};
|
|
|
|
class TestResultPrinter : public testing::EmptyTestEventListener {
|
|
public:
|
|
TestResultPrinter() : pinfo_(NULL) {}
|
|
virtual void OnTestStart(const testing::TestInfo& test_info) {
|
|
pinfo_ = &test_info; // Record test_info for use in OnTestPartResult.
|
|
}
|
|
virtual void OnTestPartResult(const testing::TestPartResult& result);
|
|
|
|
private:
|
|
const testing::TestInfo* pinfo_;
|
|
};
|
|
|
|
// Called after an assertion failure.
|
|
void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result) {
|
|
// If the test part succeeded, we don't need to do anything.
|
|
if (result.type() == testing::TestPartResult::kSuccess)
|
|
return;
|
|
|
|
// Print failure message from the assertion (e.g. expected this and got that).
|
|
printf("%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(), result.line_number(),
|
|
pinfo_->test_case_name(), pinfo_->name(), result.message());
|
|
fflush(stdout);
|
|
}
|
|
|
|
static int64_t NanoTime() {
|
|
std::chrono::nanoseconds duration(std::chrono::steady_clock::now().time_since_epoch());
|
|
return static_cast<int64_t>(duration.count());
|
|
}
|
|
|
|
static bool EnumerateTests(int argc, char** argv, std::vector<TestCase>& testcase_list) {
|
|
std::string command;
|
|
for (int i = 0; i < argc; ++i) {
|
|
command += argv[i];
|
|
command += " ";
|
|
}
|
|
command += "--gtest_list_tests";
|
|
FILE* fp = popen(command.c_str(), "r");
|
|
if (fp == NULL) {
|
|
perror("popen");
|
|
return false;
|
|
}
|
|
|
|
char buf[200];
|
|
while (fgets(buf, sizeof(buf), fp) != NULL) {
|
|
char* p = buf;
|
|
|
|
while (*p != '\0' && isspace(*p)) {
|
|
++p;
|
|
}
|
|
if (*p == '\0') continue;
|
|
char* start = p;
|
|
while (*p != '\0' && !isspace(*p)) {
|
|
++p;
|
|
}
|
|
char* end = p;
|
|
while (*p != '\0' && isspace(*p)) {
|
|
++p;
|
|
}
|
|
if (*p != '\0' && *p != '#') {
|
|
// This is not we want, gtest must meet with some error when parsing the arguments.
|
|
fprintf(stderr, "argument error, check with --help\n");
|
|
return false;
|
|
}
|
|
*end = '\0';
|
|
if (*(end - 1) == '.') {
|
|
*(end - 1) = '\0';
|
|
testcase_list.push_back(TestCase(start));
|
|
} else {
|
|
testcase_list.back().AppendTest(start);
|
|
}
|
|
}
|
|
int result = pclose(fp);
|
|
return (result != -1 && WEXITSTATUS(result) == 0);
|
|
}
|
|
|
|
// Part of the following *Print functions are copied from external/gtest/src/gtest.cc:
|
|
// PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter
|
|
// is defined and used in gtest.cc, which is hard to reuse.
|
|
static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, size_t iteration,
|
|
int iteration_count, size_t job_count) {
|
|
if (iteration_count != 1) {
|
|
printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration);
|
|
}
|
|
ColoredPrintf(COLOR_GREEN, "[==========] ");
|
|
|
|
size_t testcase_count = testcase_list.size();
|
|
size_t test_count = 0;
|
|
for (const auto& testcase : testcase_list) {
|
|
test_count += testcase.TestCount();
|
|
}
|
|
|
|
printf("Running %zu %s from %zu %s (%zu %s).\n",
|
|
test_count, (test_count == 1) ? "test" : "tests",
|
|
testcase_count, (testcase_count == 1) ? "test case" : "test cases",
|
|
job_count, (job_count == 1) ? "job" : "jobs");
|
|
fflush(stdout);
|
|
}
|
|
|
|
// bionic cts test needs gtest output format.
|
|
#if defined(USING_GTEST_OUTPUT_FORMAT)
|
|
|
|
static void OnTestEndPrint(const TestCase& testcase, size_t test_id) {
|
|
ColoredPrintf(COLOR_GREEN, "[ RUN ] ");
|
|
printf("%s\n", testcase.GetTestName(test_id).c_str());
|
|
|
|
const std::string& test_output = testcase.GetTest(test_id).GetTestOutput();
|
|
printf("%s", test_output.c_str());
|
|
|
|
TestResult result = testcase.GetTestResult(test_id);
|
|
if (result == testcase.GetExpectedTestResult(test_id)) {
|
|
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
|
|
} else {
|
|
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
|
|
}
|
|
printf("%s", testcase.GetTestName(test_id).c_str());
|
|
if (testing::GTEST_FLAG(print_time)) {
|
|
printf(" (%" PRId64 " ms)", testcase.GetTestTime(test_id) / 1000000);
|
|
}
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
|
|
#else // !defined(USING_GTEST_OUTPUT_FORMAT)
|
|
|
|
static void OnTestEndPrint(const TestCase& testcase, size_t test_id) {
|
|
TestResult result = testcase.GetTestResult(test_id);
|
|
TestResult expected = testcase.GetExpectedTestResult(test_id);
|
|
if (result == TEST_SUCCESS) {
|
|
if (expected == TEST_SUCCESS) {
|
|
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
|
|
} else if (expected == TEST_FAILED) {
|
|
ColoredPrintf(COLOR_RED, "[ XPASS ] ");
|
|
}
|
|
} else if (result == TEST_FAILED) {
|
|
if (expected == TEST_SUCCESS) {
|
|
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
|
|
} else if (expected == TEST_FAILED) {
|
|
ColoredPrintf(COLOR_YELLOW, "[ XFAIL ] ");
|
|
}
|
|
} else if (result == TEST_TIMEOUT) {
|
|
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
|
|
}
|
|
|
|
printf("%s", testcase.GetTestName(test_id).c_str());
|
|
if (testing::GTEST_FLAG(print_time)) {
|
|
printf(" (%" PRId64 " ms)", testcase.GetTestTime(test_id) / 1000000);
|
|
}
|
|
printf("\n");
|
|
|
|
const std::string& test_output = testcase.GetTest(test_id).GetTestOutput();
|
|
printf("%s", test_output.c_str());
|
|
fflush(stdout);
|
|
}
|
|
|
|
#endif // !defined(USING_GTEST_OUTPUT_FORMAT)
|
|
|
|
static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, size_t /*iteration*/,
|
|
int64_t elapsed_time_ns) {
|
|
|
|
std::vector<std::string> fail_test_name_list;
|
|
std::vector<std::string> xpass_test_name_list;
|
|
std::vector<std::pair<std::string, int64_t>> timeout_test_list;
|
|
|
|
// For tests that were slow but didn't time out.
|
|
std::vector<std::tuple<std::string, int64_t, int>> slow_test_list;
|
|
size_t testcase_count = testcase_list.size();
|
|
size_t test_count = 0;
|
|
size_t success_test_count = 0;
|
|
size_t expected_failure_count = 0;
|
|
|
|
for (const auto& testcase : testcase_list) {
|
|
test_count += testcase.TestCount();
|
|
for (size_t i = 0; i < testcase.TestCount(); ++i) {
|
|
TestResult result = testcase.GetTestResult(i);
|
|
TestResult expected = testcase.GetExpectedTestResult(i);
|
|
if (result == TEST_TIMEOUT) {
|
|
timeout_test_list.push_back(
|
|
std::make_pair(testcase.GetTestName(i), testcase.GetTestTime(i)));
|
|
} else if (result == expected) {
|
|
if (result == TEST_SUCCESS) {
|
|
++success_test_count;
|
|
} else {
|
|
++expected_failure_count;
|
|
}
|
|
} else {
|
|
if (result == TEST_FAILED) {
|
|
fail_test_name_list.push_back(testcase.GetTestName(i));
|
|
} else {
|
|
xpass_test_name_list.push_back(testcase.GetTestName(i));
|
|
}
|
|
}
|
|
if (result != TEST_TIMEOUT &&
|
|
testcase.GetTestTime(i) / 1000000 >= GetSlowThresholdMs(testcase.GetTestName(i))) {
|
|
slow_test_list.push_back(std::make_tuple(testcase.GetTestName(i),
|
|
testcase.GetTestTime(i),
|
|
GetSlowThresholdMs(testcase.GetTestName(i))));
|
|
}
|
|
}
|
|
}
|
|
|
|
ColoredPrintf(COLOR_GREEN, "[==========] ");
|
|
printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests",
|
|
testcase_count, (testcase_count == 1) ? "test case" : "test cases");
|
|
if (testing::GTEST_FLAG(print_time)) {
|
|
printf(" (%" PRId64 " ms total)", elapsed_time_ns / 1000000);
|
|
}
|
|
printf("\n");
|
|
ColoredPrintf(COLOR_GREEN, "[ PASS ] ");
|
|
printf("%zu %s.", success_test_count, (success_test_count == 1) ? "test" : "tests");
|
|
if (expected_failure_count > 0) {
|
|
printf(" (%zu expected failure%s)", expected_failure_count,
|
|
(expected_failure_count == 1) ? "" : "s");
|
|
}
|
|
printf("\n");
|
|
|
|
// Print tests that timed out.
|
|
size_t timeout_test_count = timeout_test_list.size();
|
|
if (timeout_test_count > 0) {
|
|
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
|
|
printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests");
|
|
for (const auto& timeout_pair : timeout_test_list) {
|
|
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
|
|
printf("%s (stopped at %" PRId64 " ms)\n", timeout_pair.first.c_str(),
|
|
timeout_pair.second / 1000000);
|
|
}
|
|
}
|
|
|
|
// Print tests that were slow.
|
|
size_t slow_test_count = slow_test_list.size();
|
|
if (slow_test_count > 0) {
|
|
ColoredPrintf(COLOR_YELLOW, "[ SLOW ] ");
|
|
printf("%zu %s, listed below:\n", slow_test_count, (slow_test_count == 1) ? "test" : "tests");
|
|
for (const auto& slow_tuple : slow_test_list) {
|
|
ColoredPrintf(COLOR_YELLOW, "[ SLOW ] ");
|
|
printf("%s (%" PRId64 " ms, exceeded %d ms)\n", std::get<0>(slow_tuple).c_str(),
|
|
std::get<1>(slow_tuple) / 1000000, std::get<2>(slow_tuple));
|
|
}
|
|
}
|
|
|
|
// Print tests that failed.
|
|
size_t fail_test_count = fail_test_name_list.size();
|
|
if (fail_test_count > 0) {
|
|
ColoredPrintf(COLOR_RED, "[ FAIL ] ");
|
|
printf("%zu %s, listed below:\n", fail_test_count, (fail_test_count == 1) ? "test" : "tests");
|
|
for (const auto& name : fail_test_name_list) {
|
|
ColoredPrintf(COLOR_RED, "[ FAIL ] ");
|
|
printf("%s\n", name.c_str());
|
|
}
|
|
}
|
|
|
|
// Print tests that should have failed.
|
|
size_t xpass_test_count = xpass_test_name_list.size();
|
|
if (xpass_test_count > 0) {
|
|
ColoredPrintf(COLOR_RED, "[ XPASS ] ");
|
|
printf("%zu %s, listed below:\n", xpass_test_count, (xpass_test_count == 1) ? "test" : "tests");
|
|
for (const auto& name : xpass_test_name_list) {
|
|
ColoredPrintf(COLOR_RED, "[ XPASS ] ");
|
|
printf("%s\n", name.c_str());
|
|
}
|
|
}
|
|
|
|
if (timeout_test_count > 0 || slow_test_count > 0 || fail_test_count > 0 || xpass_test_count > 0) {
|
|
printf("\n");
|
|
}
|
|
|
|
if (timeout_test_count > 0) {
|
|
printf("%2zu TIMEOUT %s\n", timeout_test_count, (timeout_test_count == 1) ? "TEST" : "TESTS");
|
|
}
|
|
if (slow_test_count > 0) {
|
|
printf("%2zu SLOW %s\n", slow_test_count, (slow_test_count == 1) ? "TEST" : "TESTS");
|
|
}
|
|
if (fail_test_count > 0) {
|
|
printf("%2zu FAILED %s\n", fail_test_count, (fail_test_count == 1) ? "TEST" : "TESTS");
|
|
}
|
|
if (xpass_test_count > 0) {
|
|
printf("%2zu SHOULD HAVE FAILED %s\n", xpass_test_count, (xpass_test_count == 1) ? "TEST" : "TESTS");
|
|
}
|
|
|
|
fflush(stdout);
|
|
}
|
|
|
|
std::string XmlEscape(const std::string& xml) {
|
|
std::string escaped;
|
|
escaped.reserve(xml.size());
|
|
|
|
for (auto c : xml) {
|
|
switch (c) {
|
|
case '<':
|
|
escaped.append("<");
|
|
break;
|
|
case '>':
|
|
escaped.append(">");
|
|
break;
|
|
case '&':
|
|
escaped.append("&");
|
|
break;
|
|
case '\'':
|
|
escaped.append("'");
|
|
break;
|
|
case '"':
|
|
escaped.append(""");
|
|
break;
|
|
default:
|
|
escaped.append(1, c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return escaped;
|
|
}
|
|
|
|
// Output xml file when --gtest_output is used, write this function as we can't reuse
|
|
// gtest.cc:XmlUnitTestResultPrinter. The reason is XmlUnitTestResultPrinter is totally
|
|
// defined in gtest.cc and not expose to outside. What's more, as we don't run gtest in
|
|
// the parent process, we don't have gtest classes which are needed by XmlUnitTestResultPrinter.
|
|
void OnTestIterationEndXmlPrint(const std::string& xml_output_filename,
|
|
const std::vector<TestCase>& testcase_list,
|
|
time_t epoch_iteration_start_time,
|
|
int64_t elapsed_time_ns) {
|
|
FILE* fp = fopen(xml_output_filename.c_str(), "w");
|
|
if (fp == NULL) {
|
|
fprintf(stderr, "failed to open '%s': %s\n", xml_output_filename.c_str(), strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
size_t total_test_count = 0;
|
|
size_t total_failed_count = 0;
|
|
std::vector<size_t> failed_count_list(testcase_list.size(), 0);
|
|
std::vector<int64_t> elapsed_time_list(testcase_list.size(), 0);
|
|
for (size_t i = 0; i < testcase_list.size(); ++i) {
|
|
auto& testcase = testcase_list[i];
|
|
total_test_count += testcase.TestCount();
|
|
for (size_t j = 0; j < testcase.TestCount(); ++j) {
|
|
if (!testcase.GetTestSuccess(j)) {
|
|
++failed_count_list[i];
|
|
}
|
|
elapsed_time_list[i] += testcase.GetTestTime(j);
|
|
}
|
|
total_failed_count += failed_count_list[i];
|
|
}
|
|
|
|
const tm* time_struct = localtime(&epoch_iteration_start_time);
|
|
char timestamp[40];
|
|
snprintf(timestamp, sizeof(timestamp), "%4d-%02d-%02dT%02d:%02d:%02d",
|
|
time_struct->tm_year + 1900, time_struct->tm_mon + 1, time_struct->tm_mday,
|
|
time_struct->tm_hour, time_struct->tm_min, time_struct->tm_sec);
|
|
|
|
fputs("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", fp);
|
|
fprintf(fp, "<testsuites tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
|
|
total_test_count, total_failed_count);
|
|
fprintf(fp, " timestamp=\"%s\" time=\"%.3lf\" name=\"AllTests\">\n", timestamp, elapsed_time_ns / 1e9);
|
|
for (size_t i = 0; i < testcase_list.size(); ++i) {
|
|
auto& testcase = testcase_list[i];
|
|
fprintf(fp, " <testsuite name=\"%s\" tests=\"%zu\" failures=\"%zu\" disabled=\"0\" errors=\"0\"",
|
|
testcase.GetName().c_str(), testcase.TestCount(), failed_count_list[i]);
|
|
fprintf(fp, " time=\"%.3lf\">\n", elapsed_time_list[i] / 1e9);
|
|
|
|
for (size_t j = 0; j < testcase.TestCount(); ++j) {
|
|
fprintf(fp, " <testcase name=\"%s\" status=\"run\" time=\"%.3lf\" classname=\"%s\"",
|
|
testcase.GetTest(j).GetName().c_str(), testcase.GetTestTime(j) / 1e9,
|
|
testcase.GetName().c_str());
|
|
if (!testcase.GetTestSuccess(j)) {
|
|
fputs(" />\n", fp);
|
|
} else {
|
|
fputs(">\n", fp);
|
|
const std::string& test_output = testcase.GetTest(j).GetTestOutput();
|
|
const std::string escaped_test_output = XmlEscape(test_output);
|
|
fprintf(fp, " <failure message=\"%s\" type=\"\">\n", escaped_test_output.c_str());
|
|
fputs(" </failure>\n", fp);
|
|
fputs(" </testcase>\n", fp);
|
|
}
|
|
}
|
|
|
|
fputs(" </testsuite>\n", fp);
|
|
}
|
|
fputs("</testsuites>\n", fp);
|
|
fclose(fp);
|
|
}
|
|
|
|
static bool sigint_flag;
|
|
static bool sigquit_flag;
|
|
|
|
static void signal_handler(int sig) {
|
|
if (sig == SIGINT) {
|
|
sigint_flag = true;
|
|
} else if (sig == SIGQUIT) {
|
|
sigquit_flag = true;
|
|
}
|
|
}
|
|
|
|
static bool RegisterSignalHandler() {
|
|
sigint_flag = false;
|
|
sigquit_flag = false;
|
|
sig_t ret = signal(SIGINT, signal_handler);
|
|
if (ret != SIG_ERR) {
|
|
ret = signal(SIGQUIT, signal_handler);
|
|
}
|
|
if (ret == SIG_ERR) {
|
|
perror("RegisterSignalHandler");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool UnregisterSignalHandler() {
|
|
sig_t ret = signal(SIGINT, SIG_DFL);
|
|
if (ret != SIG_ERR) {
|
|
ret = signal(SIGQUIT, SIG_DFL);
|
|
}
|
|
if (ret == SIG_ERR) {
|
|
perror("UnregisterSignalHandler");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
struct ChildProcInfo {
|
|
pid_t pid;
|
|
int64_t start_time_ns;
|
|
int64_t end_time_ns;
|
|
int64_t deadline_end_time_ns; // The time when the test is thought of as timeout.
|
|
size_t testcase_id, test_id;
|
|
bool finished;
|
|
bool timed_out;
|
|
int exit_status;
|
|
int child_read_fd; // File descriptor to read child test failure info.
|
|
};
|
|
|
|
// Forked Child process, run the single test.
|
|
static void ChildProcessFn(int argc, char** argv, const std::string& test_name) {
|
|
char** new_argv = new char*[argc + 2];
|
|
memcpy(new_argv, argv, sizeof(char*) * argc);
|
|
|
|
char* filter_arg = new char [test_name.size() + 20];
|
|
strcpy(filter_arg, "--gtest_filter=");
|
|
strcat(filter_arg, test_name.c_str());
|
|
new_argv[argc] = filter_arg;
|
|
new_argv[argc + 1] = NULL;
|
|
|
|
int new_argc = argc + 1;
|
|
testing::InitGoogleTest(&new_argc, new_argv);
|
|
int result = RUN_ALL_TESTS();
|
|
exit(result);
|
|
}
|
|
|
|
static ChildProcInfo RunChildProcess(const std::string& test_name, int testcase_id, int test_id,
|
|
int argc, char** argv) {
|
|
int pipefd[2];
|
|
if (pipe(pipefd) == -1) {
|
|
perror("pipe in RunTestInSeparateProc");
|
|
exit(1);
|
|
}
|
|
if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1) {
|
|
perror("fcntl in RunTestInSeparateProc");
|
|
exit(1);
|
|
}
|
|
pid_t pid = fork();
|
|
if (pid == -1) {
|
|
perror("fork in RunTestInSeparateProc");
|
|
exit(1);
|
|
} else if (pid == 0) {
|
|
// In child process, run a single test.
|
|
close(pipefd[0]);
|
|
close(STDOUT_FILENO);
|
|
close(STDERR_FILENO);
|
|
dup2(pipefd[1], STDOUT_FILENO);
|
|
dup2(pipefd[1], STDERR_FILENO);
|
|
|
|
if (!UnregisterSignalHandler()) {
|
|
exit(1);
|
|
}
|
|
ChildProcessFn(argc, argv, test_name);
|
|
// Unreachable.
|
|
}
|
|
// In parent process, initialize child process info.
|
|
close(pipefd[1]);
|
|
ChildProcInfo child_proc;
|
|
child_proc.child_read_fd = pipefd[0];
|
|
child_proc.pid = pid;
|
|
child_proc.start_time_ns = NanoTime();
|
|
child_proc.deadline_end_time_ns = child_proc.start_time_ns + GetTimeoutMs(test_name) * 1000000LL;
|
|
child_proc.testcase_id = testcase_id;
|
|
child_proc.test_id = test_id;
|
|
child_proc.finished = false;
|
|
return child_proc;
|
|
}
|
|
|
|
static void HandleSignals(std::vector<TestCase>& testcase_list,
|
|
std::vector<ChildProcInfo>& child_proc_list) {
|
|
if (sigquit_flag) {
|
|
sigquit_flag = false;
|
|
// Print current running tests.
|
|
printf("List of current running tests:\n");
|
|
for (const auto& child_proc : child_proc_list) {
|
|
if (child_proc.pid != 0) {
|
|
std::string test_name = testcase_list[child_proc.testcase_id].GetTestName(child_proc.test_id);
|
|
int64_t current_time_ns = NanoTime();
|
|
int64_t run_time_ms = (current_time_ns - child_proc.start_time_ns) / 1000000;
|
|
printf(" %s (%" PRId64 " ms)\n", test_name.c_str(), run_time_ms);
|
|
}
|
|
}
|
|
} else if (sigint_flag) {
|
|
sigint_flag = false;
|
|
// Kill current running tests.
|
|
for (const auto& child_proc : child_proc_list) {
|
|
if (child_proc.pid != 0) {
|
|
// Send SIGKILL to ensure the child process can be killed unconditionally.
|
|
kill(child_proc.pid, SIGKILL);
|
|
}
|
|
}
|
|
// SIGINT kills the parent process as well.
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static bool CheckChildProcExit(pid_t exit_pid, int exit_status,
|
|
std::vector<ChildProcInfo>& child_proc_list) {
|
|
for (size_t i = 0; i < child_proc_list.size(); ++i) {
|
|
if (child_proc_list[i].pid == exit_pid) {
|
|
child_proc_list[i].finished = true;
|
|
child_proc_list[i].timed_out = false;
|
|
child_proc_list[i].exit_status = exit_status;
|
|
child_proc_list[i].end_time_ns = NanoTime();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static size_t CheckChildProcTimeout(std::vector<ChildProcInfo>& child_proc_list) {
|
|
int64_t current_time_ns = NanoTime();
|
|
size_t timeout_child_count = 0;
|
|
for (size_t i = 0; i < child_proc_list.size(); ++i) {
|
|
if (child_proc_list[i].deadline_end_time_ns <= current_time_ns) {
|
|
child_proc_list[i].finished = true;
|
|
child_proc_list[i].timed_out = true;
|
|
child_proc_list[i].end_time_ns = current_time_ns;
|
|
++timeout_child_count;
|
|
}
|
|
}
|
|
return timeout_child_count;
|
|
}
|
|
|
|
static void ReadChildProcOutput(std::vector<TestCase>& testcase_list,
|
|
std::vector<ChildProcInfo>& child_proc_list) {
|
|
for (const auto& child_proc : child_proc_list) {
|
|
TestCase& testcase = testcase_list[child_proc.testcase_id];
|
|
int test_id = child_proc.test_id;
|
|
while (true) {
|
|
char buf[1024];
|
|
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(child_proc.child_read_fd, buf, sizeof(buf) - 1));
|
|
if (bytes_read > 0) {
|
|
buf[bytes_read] = '\0';
|
|
testcase.GetTest(test_id).AppendTestOutput(buf);
|
|
} else if (bytes_read == 0) {
|
|
break; // Read end.
|
|
} else {
|
|
if (errno == EAGAIN) {
|
|
break;
|
|
}
|
|
perror("failed to read child_read_fd");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void WaitChildProcs(std::vector<TestCase>& testcase_list,
|
|
std::vector<ChildProcInfo>& child_proc_list) {
|
|
size_t finished_child_count = 0;
|
|
while (true) {
|
|
int status;
|
|
pid_t result;
|
|
while ((result = TEMP_FAILURE_RETRY(waitpid(-1, &status, WNOHANG))) > 0) {
|
|
if (CheckChildProcExit(result, status, child_proc_list)) {
|
|
++finished_child_count;
|
|
}
|
|
}
|
|
|
|
if (result == -1) {
|
|
if (errno == ECHILD) {
|
|
// This happens when we have no running child processes.
|
|
return;
|
|
} else {
|
|
perror("waitpid");
|
|
exit(1);
|
|
}
|
|
} else if (result == 0) {
|
|
finished_child_count += CheckChildProcTimeout(child_proc_list);
|
|
}
|
|
|
|
ReadChildProcOutput(testcase_list, child_proc_list);
|
|
if (finished_child_count > 0) {
|
|
return;
|
|
}
|
|
|
|
HandleSignals(testcase_list, child_proc_list);
|
|
|
|
// sleep 1 ms to avoid busy looping.
|
|
timespec sleep_time;
|
|
sleep_time.tv_sec = 0;
|
|
sleep_time.tv_nsec = 1000000;
|
|
nanosleep(&sleep_time, NULL);
|
|
}
|
|
}
|
|
|
|
static TestResult WaitForOneChild(pid_t pid) {
|
|
int exit_status;
|
|
pid_t result = TEMP_FAILURE_RETRY(waitpid(pid, &exit_status, 0));
|
|
|
|
TestResult test_result = TEST_SUCCESS;
|
|
if (result != pid || WEXITSTATUS(exit_status) != 0) {
|
|
test_result = TEST_FAILED;
|
|
}
|
|
return test_result;
|
|
}
|
|
|
|
static void CollectChildTestResult(const ChildProcInfo& child_proc, TestCase& testcase) {
|
|
int test_id = child_proc.test_id;
|
|
testcase.SetTestTime(test_id, child_proc.end_time_ns - child_proc.start_time_ns);
|
|
if (child_proc.timed_out) {
|
|
// The child process marked as timed_out has not exited, and we should kill it manually.
|
|
kill(child_proc.pid, SIGKILL);
|
|
WaitForOneChild(child_proc.pid);
|
|
}
|
|
close(child_proc.child_read_fd);
|
|
|
|
if (child_proc.timed_out) {
|
|
testcase.SetTestResult(test_id, TEST_TIMEOUT);
|
|
char buf[1024];
|
|
snprintf(buf, sizeof(buf), "%s killed because of timeout at %" PRId64 " ms.\n",
|
|
testcase.GetTestName(test_id).c_str(), testcase.GetTestTime(test_id) / 1000000);
|
|
testcase.GetTest(test_id).AppendTestOutput(buf);
|
|
|
|
} else if (WIFSIGNALED(child_proc.exit_status)) {
|
|
// Record signal terminated test as failed.
|
|
testcase.SetTestResult(test_id, TEST_FAILED);
|
|
char buf[1024];
|
|
snprintf(buf, sizeof(buf), "%s terminated by signal: %s.\n",
|
|
testcase.GetTestName(test_id).c_str(), strsignal(WTERMSIG(child_proc.exit_status)));
|
|
testcase.GetTest(test_id).AppendTestOutput(buf);
|
|
|
|
} else {
|
|
int exitcode = WEXITSTATUS(child_proc.exit_status);
|
|
testcase.SetTestResult(test_id, exitcode == 0 ? TEST_SUCCESS : TEST_FAILED);
|
|
if (exitcode != 0) {
|
|
char buf[1024];
|
|
snprintf(buf, sizeof(buf), "%s exited with exitcode %d.\n",
|
|
testcase.GetTestName(test_id).c_str(), exitcode);
|
|
testcase.GetTest(test_id).AppendTestOutput(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We choose to use multi-fork and multi-wait here instead of multi-thread, because it always
|
|
// makes deadlock to use fork in multi-thread.
|
|
// Returns true if all tests run successfully, otherwise return false.
|
|
static bool RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list,
|
|
int iteration_count, size_t job_count,
|
|
const std::string& xml_output_filename) {
|
|
// Stop default result printer to avoid environment setup/teardown information for each test.
|
|
testing::UnitTest::GetInstance()->listeners().Release(
|
|
testing::UnitTest::GetInstance()->listeners().default_result_printer());
|
|
testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter);
|
|
|
|
if (!RegisterSignalHandler()) {
|
|
exit(1);
|
|
}
|
|
|
|
bool all_tests_passed = true;
|
|
|
|
for (size_t iteration = 1;
|
|
iteration_count < 0 || iteration <= static_cast<size_t>(iteration_count);
|
|
++iteration) {
|
|
OnTestIterationStartPrint(testcase_list, iteration, iteration_count, job_count);
|
|
int64_t iteration_start_time_ns = NanoTime();
|
|
time_t epoch_iteration_start_time = time(NULL);
|
|
|
|
// Run up to job_count tests in parallel, each test in a child process.
|
|
std::vector<ChildProcInfo> child_proc_list;
|
|
|
|
// Next test to run is [next_testcase_id:next_test_id].
|
|
size_t next_testcase_id = 0;
|
|
size_t next_test_id = 0;
|
|
|
|
// Record how many tests are finished.
|
|
std::vector<size_t> finished_test_count_list(testcase_list.size(), 0);
|
|
size_t finished_testcase_count = 0;
|
|
|
|
while (finished_testcase_count < testcase_list.size()) {
|
|
// run up to job_count child processes.
|
|
while (child_proc_list.size() < job_count && next_testcase_id < testcase_list.size()) {
|
|
std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id);
|
|
ChildProcInfo child_proc = RunChildProcess(test_name, next_testcase_id, next_test_id,
|
|
argc, argv);
|
|
child_proc_list.push_back(child_proc);
|
|
if (++next_test_id == testcase_list[next_testcase_id].TestCount()) {
|
|
next_test_id = 0;
|
|
++next_testcase_id;
|
|
}
|
|
}
|
|
|
|
// Wait for any child proc finish or timeout.
|
|
WaitChildProcs(testcase_list, child_proc_list);
|
|
|
|
// Collect result.
|
|
auto it = child_proc_list.begin();
|
|
while (it != child_proc_list.end()) {
|
|
auto& child_proc = *it;
|
|
if (child_proc.finished == true) {
|
|
size_t testcase_id = child_proc.testcase_id;
|
|
size_t test_id = child_proc.test_id;
|
|
TestCase& testcase = testcase_list[testcase_id];
|
|
|
|
CollectChildTestResult(child_proc, testcase);
|
|
OnTestEndPrint(testcase, test_id);
|
|
|
|
if (++finished_test_count_list[testcase_id] == testcase.TestCount()) {
|
|
++finished_testcase_count;
|
|
}
|
|
if (!testcase.GetTestSuccess(test_id)) {
|
|
all_tests_passed = false;
|
|
}
|
|
|
|
it = child_proc_list.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t elapsed_time_ns = NanoTime() - iteration_start_time_ns;
|
|
OnTestIterationEndPrint(testcase_list, iteration, elapsed_time_ns);
|
|
if (!xml_output_filename.empty()) {
|
|
OnTestIterationEndXmlPrint(xml_output_filename, testcase_list, epoch_iteration_start_time,
|
|
elapsed_time_ns);
|
|
}
|
|
}
|
|
|
|
if (!UnregisterSignalHandler()) {
|
|
exit(1);
|
|
}
|
|
|
|
return all_tests_passed;
|
|
}
|
|
|
|
static size_t GetDefaultJobCount() {
|
|
return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN));
|
|
}
|
|
|
|
static void AddPathSeparatorInTestProgramPath(std::vector<char*>& args) {
|
|
// To run DeathTest in threadsafe mode, gtest requires that the user must invoke the
|
|
// test program via a valid path that contains at least one path separator.
|
|
// The reason is that gtest uses clone() + execve() to run DeathTest in threadsafe mode,
|
|
// and execve() doesn't read environment variable PATH, so execve() will not success
|
|
// until we specify the absolute path or relative path of the test program directly.
|
|
if (strchr(args[0], '/') == nullptr) {
|
|
args[0] = strdup(g_executable_path.c_str());
|
|
}
|
|
}
|
|
|
|
static void AddGtestFilterSynonym(std::vector<char*>& args) {
|
|
// Support --gtest-filter as a synonym for --gtest_filter.
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
if (strncmp(args[i], "--gtest-filter", strlen("--gtest-filter")) == 0) {
|
|
args[i][7] = '_';
|
|
}
|
|
}
|
|
}
|
|
|
|
struct IsolationTestOptions {
|
|
bool isolate;
|
|
size_t job_count;
|
|
int test_deadline_ms;
|
|
int test_slow_threshold_ms;
|
|
std::string gtest_color;
|
|
bool gtest_print_time;
|
|
int gtest_repeat;
|
|
std::string gtest_output;
|
|
};
|
|
|
|
// Pick options not for gtest: There are two parts in args, one part is used in isolation test mode
|
|
// as described in PrintHelpInfo(), the other part is handled by testing::InitGoogleTest() in
|
|
// gtest. PickOptions() picks the first part into IsolationTestOptions structure, leaving the second
|
|
// part in args.
|
|
// Arguments:
|
|
// args is used to pass in all command arguments, and pass out only the part of options for gtest.
|
|
// options is used to pass out test options in isolation mode.
|
|
// Return false if there is error in arguments.
|
|
static bool PickOptions(std::vector<char*>& args, IsolationTestOptions& options) {
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
if (strcmp(args[i], "--help") == 0 || strcmp(args[i], "-h") == 0) {
|
|
PrintHelpInfo();
|
|
options.isolate = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
AddPathSeparatorInTestProgramPath(args);
|
|
AddGtestFilterSynonym(args);
|
|
|
|
// if --bionic-selftest argument is used, only enable self tests, otherwise remove self tests.
|
|
bool enable_selftest = false;
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
if (strcmp(args[i], "--bionic-selftest") == 0) {
|
|
// This argument is to enable "bionic_selftest*" for self test, and is not shown in help info.
|
|
// Don't remove this option from arguments.
|
|
enable_selftest = true;
|
|
}
|
|
}
|
|
std::string gtest_filter_str;
|
|
for (size_t i = args.size() - 1; i >= 1; --i) {
|
|
if (strncmp(args[i], "--gtest_filter=", strlen("--gtest_filter=")) == 0) {
|
|
gtest_filter_str = args[i] + strlen("--gtest_filter=");
|
|
args.erase(args.begin() + i);
|
|
break;
|
|
}
|
|
}
|
|
if (enable_selftest == true) {
|
|
gtest_filter_str = "bionic_selftest*";
|
|
} else {
|
|
if (gtest_filter_str.empty()) {
|
|
gtest_filter_str = "-bionic_selftest*";
|
|
} else {
|
|
// Find if '-' for NEGATIVE_PATTERNS exists.
|
|
if (gtest_filter_str.find('-') != std::string::npos) {
|
|
gtest_filter_str += ":bionic_selftest*";
|
|
} else {
|
|
gtest_filter_str += ":-bionic_selftest*";
|
|
}
|
|
}
|
|
}
|
|
gtest_filter_str = "--gtest_filter=" + gtest_filter_str;
|
|
args.push_back(strdup(gtest_filter_str.c_str()));
|
|
|
|
options.isolate = true;
|
|
// Parse arguments that make us can't run in isolation mode.
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
if (strcmp(args[i], "--no-isolate") == 0) {
|
|
options.isolate = false;
|
|
} else if (strcmp(args[i], "--gtest_list_tests") == 0) {
|
|
options.isolate = false;
|
|
}
|
|
}
|
|
|
|
// Stop parsing if we will not run in isolation mode.
|
|
if (options.isolate == false) {
|
|
return true;
|
|
}
|
|
|
|
// Init default isolation test options.
|
|
options.job_count = GetDefaultJobCount();
|
|
options.test_deadline_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_MS;
|
|
options.test_slow_threshold_ms = DEFAULT_GLOBAL_TEST_RUN_SLOW_THRESHOLD_MS;
|
|
options.gtest_color = testing::GTEST_FLAG(color);
|
|
options.gtest_print_time = testing::GTEST_FLAG(print_time);
|
|
options.gtest_repeat = testing::GTEST_FLAG(repeat);
|
|
options.gtest_output = testing::GTEST_FLAG(output);
|
|
|
|
// Parse arguments speficied for isolation mode.
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
if (strncmp(args[i], "-j", strlen("-j")) == 0) {
|
|
char* p = args[i] + strlen("-j");
|
|
int count = 0;
|
|
if (*p != '\0') {
|
|
// Argument like -j5.
|
|
count = atoi(p);
|
|
} else if (args.size() > i + 1) {
|
|
// Arguments like -j 5.
|
|
count = atoi(args[i + 1]);
|
|
++i;
|
|
}
|
|
if (count <= 0) {
|
|
fprintf(stderr, "invalid job count: %d\n", count);
|
|
return false;
|
|
}
|
|
options.job_count = static_cast<size_t>(count);
|
|
} else if (strncmp(args[i], "--deadline=", strlen("--deadline=")) == 0) {
|
|
int time_ms = atoi(args[i] + strlen("--deadline="));
|
|
if (time_ms <= 0) {
|
|
fprintf(stderr, "invalid deadline: %d\n", time_ms);
|
|
return false;
|
|
}
|
|
options.test_deadline_ms = time_ms;
|
|
} else if (strncmp(args[i], "--slow-threshold=", strlen("--slow-threshold=")) == 0) {
|
|
int time_ms = atoi(args[i] + strlen("--slow-threshold="));
|
|
if (time_ms <= 0) {
|
|
fprintf(stderr, "invalid slow test threshold: %d\n", time_ms);
|
|
return false;
|
|
}
|
|
options.test_slow_threshold_ms = time_ms;
|
|
} else if (strncmp(args[i], "--gtest_color=", strlen("--gtest_color=")) == 0) {
|
|
options.gtest_color = args[i] + strlen("--gtest_color=");
|
|
} else if (strcmp(args[i], "--gtest_print_time=0") == 0) {
|
|
options.gtest_print_time = false;
|
|
} else if (strncmp(args[i], "--gtest_repeat=", strlen("--gtest_repeat=")) == 0) {
|
|
// If the value of gtest_repeat is < 0, then it indicates the tests
|
|
// should be repeated forever.
|
|
options.gtest_repeat = atoi(args[i] + strlen("--gtest_repeat="));
|
|
// Remove --gtest_repeat=xx from arguments, so child process only run one iteration for a single test.
|
|
args.erase(args.begin() + i);
|
|
--i;
|
|
} else if (strncmp(args[i], "--gtest_output=", strlen("--gtest_output=")) == 0) {
|
|
std::string output = args[i] + strlen("--gtest_output=");
|
|
// generate output xml file path according to the strategy in gtest.
|
|
bool success = true;
|
|
if (strncmp(output.c_str(), "xml:", strlen("xml:")) == 0) {
|
|
output = output.substr(strlen("xml:"));
|
|
if (output.size() == 0) {
|
|
success = false;
|
|
}
|
|
// Make absolute path.
|
|
if (success && output[0] != '/') {
|
|
char* cwd = getcwd(NULL, 0);
|
|
if (cwd != NULL) {
|
|
output = std::string(cwd) + "/" + output;
|
|
free(cwd);
|
|
} else {
|
|
success = false;
|
|
}
|
|
}
|
|
// Add file name if output is a directory.
|
|
if (success && output.back() == '/') {
|
|
output += "test_details.xml";
|
|
}
|
|
}
|
|
if (success) {
|
|
options.gtest_output = output;
|
|
} else {
|
|
fprintf(stderr, "invalid gtest_output file: %s\n", args[i]);
|
|
return false;
|
|
}
|
|
|
|
// Remove --gtest_output=xxx from arguments, so child process will not write xml file.
|
|
args.erase(args.begin() + i);
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Add --no-isolate in args to prevent child process from running in isolation mode again.
|
|
// As DeathTest will try to call execve(), this argument should always be added.
|
|
args.insert(args.begin() + 1, strdup("--no-isolate"));
|
|
return true;
|
|
}
|
|
|
|
static std::string get_proc_self_exe() {
|
|
char path[PATH_MAX];
|
|
ssize_t path_len = readlink("/proc/self/exe", path, sizeof(path));
|
|
if (path_len <= 0 || path_len >= static_cast<ssize_t>(sizeof(path))) {
|
|
perror("readlink");
|
|
exit(1);
|
|
}
|
|
|
|
return std::string(path, path_len);
|
|
}
|
|
|
|
int main(int argc, char** argv, char** envp) {
|
|
g_executable_path = get_proc_self_exe();
|
|
g_argc = argc;
|
|
g_argv = argv;
|
|
g_envp = envp;
|
|
std::vector<char*> arg_list;
|
|
for (int i = 0; i < argc; ++i) {
|
|
arg_list.push_back(argv[i]);
|
|
}
|
|
|
|
IsolationTestOptions options;
|
|
if (PickOptions(arg_list, options) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (options.isolate == true) {
|
|
// Set global variables.
|
|
global_test_run_deadline_ms = options.test_deadline_ms;
|
|
global_test_run_slow_threshold_ms = options.test_slow_threshold_ms;
|
|
testing::GTEST_FLAG(color) = options.gtest_color.c_str();
|
|
testing::GTEST_FLAG(print_time) = options.gtest_print_time;
|
|
std::vector<TestCase> testcase_list;
|
|
|
|
argc = static_cast<int>(arg_list.size());
|
|
arg_list.push_back(NULL);
|
|
if (EnumerateTests(argc, arg_list.data(), testcase_list) == false) {
|
|
return 1;
|
|
}
|
|
bool all_test_passed = RunTestInSeparateProc(argc, arg_list.data(), testcase_list,
|
|
options.gtest_repeat, options.job_count, options.gtest_output);
|
|
return all_test_passed ? 0 : 1;
|
|
} else {
|
|
argc = static_cast<int>(arg_list.size());
|
|
arg_list.push_back(NULL);
|
|
testing::InitGoogleTest(&argc, arg_list.data());
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
}
|
|
|
|
//################################################################################
|
|
// Bionic Gtest self test, run this by --bionic-selftest option.
|
|
|
|
TEST(bionic_selftest, test_success) {
|
|
ASSERT_EQ(1, 1);
|
|
}
|
|
|
|
TEST(bionic_selftest, test_fail) {
|
|
ASSERT_EQ(0, 1);
|
|
}
|
|
|
|
TEST(bionic_selftest, test_time_warn) {
|
|
sleep(4);
|
|
}
|
|
|
|
TEST(bionic_selftest, test_timeout) {
|
|
while (1) {}
|
|
}
|
|
|
|
TEST(bionic_selftest, test_signal_SEGV_terminated) {
|
|
char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0")));
|
|
*p = 3;
|
|
}
|
|
|
|
class bionic_selftest_DeathTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() {
|
|
::testing::FLAGS_gtest_death_test_style = "threadsafe";
|
|
}
|
|
};
|
|
|
|
static void deathtest_helper_success() {
|
|
ASSERT_EQ(1, 1);
|
|
exit(0);
|
|
}
|
|
|
|
TEST_F(bionic_selftest_DeathTest, success) {
|
|
ASSERT_EXIT(deathtest_helper_success(), ::testing::ExitedWithCode(0), "");
|
|
}
|
|
|
|
static void deathtest_helper_fail() {
|
|
ASSERT_EQ(1, 0);
|
|
}
|
|
|
|
TEST_F(bionic_selftest_DeathTest, fail) {
|
|
ASSERT_EXIT(deathtest_helper_fail(), ::testing::ExitedWithCode(0), "");
|
|
}
|