android_bionic/tests/signal_test.cpp

977 lines
27 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <signal.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <thread>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include "SignalUtils.h"
static int SIGNAL_MIN() {
return 1; // Signals start at 1 (SIGHUP), not 0.
}
template <typename SigSetT>
static int SIGNAL_MAX(SigSetT* set) {
return sizeof(*set) * 8;
}
template <typename SigSetT>
static void TestSigSet1(int (fn)(SigSetT*)) {
// nullptr sigset_t*/sigset64_t*.
SigSetT* set_ptr = nullptr;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr));
ASSERT_EQ(EINVAL, errno);
// Non-nullptr.
SigSetT set = {};
errno = 0;
ASSERT_EQ(0, fn(&set));
ASSERT_EQ(0, errno);
}
template <typename SigSetT>
static void TestSigSet2(int (fn)(SigSetT*, int)) {
// nullptr sigset_t*/sigset64_t*.
SigSetT* set_ptr = nullptr;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr, SIGSEGV));
ASSERT_EQ(EINVAL, errno);
SigSetT set = {};
// Bad signal number: too small.
errno = 0;
ASSERT_EQ(-1, fn(&set, 0));
ASSERT_EQ(EINVAL, errno);
// Bad signal number: too high.
errno = 0;
ASSERT_EQ(-1, fn(&set, SIGNAL_MAX(&set) + 1));
ASSERT_EQ(EINVAL, errno);
// Good signal numbers, low and high ends of range.
errno = 0;
ASSERT_EQ(0, fn(&set, SIGNAL_MIN()));
ASSERT_EQ(0, errno);
ASSERT_EQ(0, fn(&set, SIGNAL_MAX(&set)));
ASSERT_EQ(0, errno);
}
TEST(signal, sigaddset_invalid) {
TestSigSet2(sigaddset);
}
TEST(signal, sigaddset64_invalid) {
#if defined(__BIONIC__)
TestSigSet2(sigaddset64);
#endif
}
TEST(signal, sigdelset_invalid) {
TestSigSet2(sigdelset);
}
TEST(signal, sigdelset64_invalid) {
#if defined(__BIONIC__)
TestSigSet2(sigdelset64);
#endif
}
TEST(signal, sigemptyset_invalid) {
TestSigSet1(sigemptyset);
}
TEST(signal, sigemptyset64_invalid) {
#if defined(__BIONIC__)
TestSigSet1(sigemptyset64);
#endif
}
TEST(signal, sigfillset_invalid) {
TestSigSet1(sigfillset);
}
TEST(signal, sigfillset64_invalid) {
#if defined(__BIONIC__)
TestSigSet1(sigfillset64);
#endif
}
TEST(signal, sigismember_invalid) {
TestSigSet2(sigismember);
}
TEST(signal, sigismember64_invalid) {
#if defined(__BIONIC__)
TestSigSet2(sigismember64);
#endif
}
TEST(signal, raise_invalid) {
errno = 0;
ASSERT_EQ(-1, raise(-1));
ASSERT_EQ(EINVAL, errno);
}
static void raise_in_signal_handler_helper(int signal_number) {
ASSERT_EQ(SIGALRM, signal_number);
static int count = 0;
if (++count == 1) {
raise(SIGALRM);
}
}
TEST(signal, raise_in_signal_handler) {
ScopedSignalHandler ssh(SIGALRM, raise_in_signal_handler_helper);
raise(SIGALRM);
}
TEST(signal, sigwait_SIGALRM) {
ScopedSignalHandler ssh(SIGALRM, [](int sig) { ASSERT_EQ(SIGALRM, sig); });
sigset_t wait_set;
sigemptyset(&wait_set);
sigaddset(&wait_set, SIGALRM);
alarm(1);
int received_signal;
errno = 0;
ASSERT_EQ(0, sigwait(&wait_set, &received_signal));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, received_signal);
}
TEST(signal, sigwait64_SIGRTMIN) {
ScopedSignalHandler ssh(SIGRTMIN, [](int sig) { ASSERT_EQ(SIGRTMIN, sig); });
sigset64_t wait_set;
sigemptyset64(&wait_set);
sigaddset64(&wait_set, SIGRTMIN);
pid_t pid = getpid();
std::thread thread([&pid]() {
usleep(5000);
kill(pid, SIGRTMIN);
});
int received_signal;
errno = 0;
ASSERT_EQ(0, sigwait64(&wait_set, &received_signal));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGRTMIN, received_signal);
thread.join();
}
static int g_sigsuspend_signal_handler_call_count = 0;
TEST(signal, sigsuspend_sigpending) {
SignalMaskRestorer smr;
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr));
ScopedSignalHandler ssh(SIGALRM, [](int) { ++g_sigsuspend_signal_handler_call_count; });
// There should be no pending signals.
sigset_t pending;
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) {
EXPECT_FALSE(sigismember(&pending, i)) << i;
}
// Raise SIGALRM and check our signal handler wasn't called.
raise(SIGALRM);
ASSERT_EQ(0, g_sigsuspend_signal_handler_call_count);
// We should now have a pending SIGALRM but nothing else.
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) {
EXPECT_EQ((i == SIGALRM), sigismember(&pending, i));
}
// Use sigsuspend to block everything except SIGALRM...
sigset_t not_SIGALRM;
sigfillset(&not_SIGALRM);
sigdelset(&not_SIGALRM, SIGALRM);
ASSERT_EQ(-1, sigsuspend(&not_SIGALRM));
ASSERT_EQ(EINTR, errno);
// ...and check that we now receive our pending SIGALRM.
ASSERT_EQ(1, g_sigsuspend_signal_handler_call_count);
}
static int g_sigsuspend64_signal_handler_call_count = 0;
TEST(signal, sigsuspend64_sigpending64) {
SignalMaskRestorer smr;
// Block SIGRTMIN.
sigset64_t just_SIGRTMIN;
sigemptyset64(&just_SIGRTMIN);
sigaddset64(&just_SIGRTMIN, SIGRTMIN);
ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr));
ScopedSignalHandler ssh(SIGRTMIN, [](int) { ++g_sigsuspend64_signal_handler_call_count; });
// There should be no pending signals.
sigset64_t pending;
sigemptyset64(&pending);
ASSERT_EQ(0, sigpending64(&pending));
for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) {
EXPECT_FALSE(sigismember64(&pending, i)) << i;
}
// Raise SIGRTMIN and check our signal handler wasn't called.
raise(SIGRTMIN);
ASSERT_EQ(0, g_sigsuspend64_signal_handler_call_count);
// We should now have a pending SIGRTMIN but nothing else.
sigemptyset64(&pending);
ASSERT_EQ(0, sigpending64(&pending));
for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) {
EXPECT_EQ((i == SIGRTMIN), sigismember64(&pending, i));
}
// Use sigsuspend64 to block everything except SIGRTMIN...
sigset64_t not_SIGRTMIN;
sigfillset64(&not_SIGRTMIN);
sigdelset64(&not_SIGRTMIN, SIGRTMIN);
ASSERT_EQ(-1, sigsuspend64(&not_SIGRTMIN));
ASSERT_EQ(EINTR, errno);
// ...and check that we now receive our pending SIGRTMIN.
ASSERT_EQ(1, g_sigsuspend64_signal_handler_call_count);
}
template <typename SigActionT, typename SigSetT>
static void TestSigAction(int (sigaction_fn)(int, const SigActionT*, SigActionT*),
int (sigaddset_fn)(SigSetT*, int),
int sig) {
// Both bionic and glibc set SA_RESTORER when talking to the kernel on arm,
// arm64, x86, and x86-64. The version of glibc we're using also doesn't
// define SA_RESTORER, but luckily it's the same value everywhere, and mips
// doesn't use the bit for anything.
static const unsigned sa_restorer = 0x4000000;
// See what's currently set for this signal.
SigActionT original_sa = {};
ASSERT_EQ(0, sigaction_fn(sig, nullptr, &original_sa));
ASSERT_TRUE(original_sa.sa_handler == nullptr);
ASSERT_TRUE(original_sa.sa_sigaction == nullptr);
ASSERT_EQ(0U, original_sa.sa_flags & ~sa_restorer);
#ifdef SA_RESTORER
ASSERT_EQ(bool(original_sa.sa_flags & sa_restorer), bool(original_sa.sa_restorer));
#endif
// Set a traditional sa_handler signal handler.
auto no_op_signal_handler = [](int) {};
SigActionT sa = {};
sigaddset_fn(&sa.sa_mask, sig);
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = no_op_signal_handler;
ASSERT_EQ(0, sigaction_fn(sig, &sa, nullptr));
// Check that we can read it back.
sa = {};
ASSERT_EQ(0, sigaction_fn(sig, nullptr, &sa));
ASSERT_TRUE(sa.sa_handler == no_op_signal_handler);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK), sa.sa_flags & ~sa_restorer);
#ifdef SA_RESTORER
ASSERT_EQ(bool(sa.sa_flags & sa_restorer), bool(sa.sa_restorer));
#endif
// Set a new-style sa_sigaction signal handler.
auto no_op_sigaction = [](int, siginfo_t*, void*) {};
sa = {};
sigaddset_fn(&sa.sa_mask, sig);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
sa.sa_sigaction = no_op_sigaction;
ASSERT_EQ(0, sigaction_fn(sig, &sa, nullptr));
// Check that we can read it back.
sa = {};
ASSERT_EQ(0, sigaction_fn(sig, nullptr, &sa));
ASSERT_TRUE(sa.sa_sigaction == no_op_sigaction);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK | SA_SIGINFO), sa.sa_flags & ~sa_restorer);
#ifdef SA_RESTORER
ASSERT_EQ(bool(sa.sa_flags & sa_restorer), bool(sa.sa_restorer));
#endif
// Put everything back how it was.
ASSERT_EQ(0, sigaction_fn(sig, &original_sa, nullptr));
}
TEST(signal, sigaction) {
TestSigAction(sigaction, sigaddset, SIGALRM);
}
TEST(signal, sigaction64_SIGRTMIN) {
TestSigAction(sigaction64, sigaddset64, SIGRTMIN);
}
static void ClearSignalMask() {
uint64_t sigset = 0;
SignalSetAdd(&sigset, __SIGRTMIN);
if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, &sigset, nullptr, sizeof(sigset)) != 0) {
abort();
}
}
static void FillSignalMask() {
uint64_t sigset = ~0ULL;
for (int signo = __SIGRTMIN + 1; signo < SIGRTMIN; ++signo) {
SignalSetDel(&sigset, signo);
}
if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, &sigset, nullptr, sizeof(sigset)) != 0) {
abort();
}
}
static uint64_t GetSignalMask() {
uint64_t sigset;
if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, nullptr, &sigset, sizeof(sigset)) != 0) {
abort();
}
return sigset;
}
static void TestSignalMaskFiltered(uint64_t sigset) {
#if defined(__BIONIC__)
for (int signo = __SIGRTMIN; signo < SIGRTMIN; ++signo) {
bool signal_blocked = sigset & (1ULL << (signo - 1));
if (signo == __SIGRTMIN) {
// TIMER_SIGNAL must be blocked.
EXPECT_EQ(true, signal_blocked) << "signal " << signo;
} else {
// The other reserved signals must not be blocked.
EXPECT_EQ(false, signal_blocked) << "signal " << signo;
}
}
#else
UNUSED(sigset);
#endif
}
static void TestSignalMaskFunction(std::function<void()> fn) {
ClearSignalMask();
fn();
TestSignalMaskFiltered(GetSignalMask());
}
TEST(signal, sigaction_filter) {
ClearSignalMask();
static uint64_t sigset;
struct sigaction sa = {};
sa.sa_handler = [](int) { sigset = GetSignalMask(); };
sa.sa_flags = SA_ONSTACK | SA_NODEFER;
sigfillset(&sa.sa_mask);
sigaction(SIGUSR1, &sa, nullptr);
raise(SIGUSR1);
// On LP32, struct sigaction::sa_mask is only 32-bits wide.
unsigned long expected_sigset = ~0UL;
// SIGKILL and SIGSTOP are always blocked.
expected_sigset &= ~(1UL << (SIGKILL - 1));
expected_sigset &= ~(1UL << (SIGSTOP - 1));
ASSERT_EQ(static_cast<uint64_t>(expected_sigset), sigset);
}
TEST(signal, sigaction64_filter) {
ClearSignalMask();
static uint64_t sigset;
struct sigaction64 sa = {};
sa.sa_handler = [](int) { sigset = GetSignalMask(); };
sa.sa_flags = SA_ONSTACK | SA_NODEFER;
sigfillset64(&sa.sa_mask);
sigaction64(SIGUSR1, &sa, nullptr);
raise(SIGUSR1);
uint64_t expected_sigset = ~0ULL;
// SIGKILL and SIGSTOP are always blocked.
expected_sigset &= ~(1ULL << (SIGKILL - 1));
expected_sigset &= ~(1ULL << (SIGSTOP - 1));
ASSERT_EQ(expected_sigset, sigset);
}
TEST(signal, sigprocmask_setmask_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &sigset_libc, nullptr));
});
}
TEST(signal, sigprocmask64_setmask_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, sigprocmask64(SIG_SETMASK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask_setmask_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask64_setmask_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &sigset_libc, nullptr));
});
}
TEST(signal, sigprocmask_block_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, sigprocmask64_block_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask_block_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask64_block_filter) {
TestSignalMaskFunction([]() {
ClearSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, sigprocmask_unblock_filter) {
TestSignalMaskFunction([]() {
FillSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, sigprocmask(SIG_UNBLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, sigprocmask64_unblock_filter) {
TestSignalMaskFunction([]() {
FillSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, sigprocmask64(SIG_UNBLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask_unblock_filter) {
TestSignalMaskFunction([]() {
FillSignalMask();
sigset_t sigset_libc;
sigfillset(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask(SIG_UNBLOCK, &sigset_libc, nullptr));
});
}
TEST(signal, pthread_sigmask64_unblock_filter) {
TestSignalMaskFunction([]() {
FillSignalMask();
sigset64_t sigset_libc;
sigfillset64(&sigset_libc);
ASSERT_EQ(0, pthread_sigmask64(SIG_UNBLOCK, &sigset_libc, nullptr));
});
}
// glibc filters out signals via sigfillset, not the actual underlying functions.
TEST(signal, sigset_filter) {
#if defined(__BIONIC__)
TestSignalMaskFunction([]() {
for (int i = 1; i <= 64; ++i) {
sigset(i, SIG_HOLD);
}
});
#endif
}
TEST(signal, sighold_filter) {
#if defined(__BIONIC__)
TestSignalMaskFunction([]() {
for (int i = 1; i <= 64; ++i) {
sighold(i);
}
});
#endif
}
#if defined(__BIONIC__)
// Not exposed via headers, but the symbols are available if you declare them yourself.
extern "C" int sigblock(int);
extern "C" int sigsetmask(int);
#endif
TEST(signal, sigblock_filter) {
#if defined(__BIONIC__)
TestSignalMaskFunction([]() {
sigblock(~0U);
});
#endif
}
TEST(signal, sigsetmask_filter) {
#if defined(__BIONIC__)
TestSignalMaskFunction([]() {
sigsetmask(~0U);
});
#endif
}
TEST(signal, sys_signame) {
#if defined(__BIONIC__)
ASSERT_TRUE(sys_signame[0] == nullptr);
ASSERT_STREQ("HUP", sys_signame[SIGHUP]);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(signal, sys_siglist) {
ASSERT_TRUE(sys_siglist[0] == nullptr);
ASSERT_STREQ("Hangup", sys_siglist[SIGHUP]);
}
TEST(signal, limits) {
// This comes from the kernel.
ASSERT_EQ(32, __SIGRTMIN);
// We reserve a non-zero number at the bottom for ourselves.
ASSERT_GT(SIGRTMIN, __SIGRTMIN);
// MIPS has more signals than everyone else.
#if defined(__mips__)
ASSERT_EQ(128, __SIGRTMAX);
#else
ASSERT_EQ(64, __SIGRTMAX);
#endif
// We don't currently reserve any at the top.
ASSERT_EQ(SIGRTMAX, __SIGRTMAX);
}
static int g_sigqueue_signal_handler_call_count = 0;
static void SigqueueSignalHandler(int signum, siginfo_t* info, void*) {
ASSERT_EQ(SIGALRM, signum);
ASSERT_EQ(SIGALRM, info->si_signo);
ASSERT_EQ(SI_QUEUE, info->si_code);
ASSERT_EQ(1, info->si_value.sival_int);
++g_sigqueue_signal_handler_call_count;
}
TEST(signal, sigqueue) {
ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO);
sigval_t sigval;
sigval.sival_int = 1;
errno = 0;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
ASSERT_EQ(0, errno);
ASSERT_EQ(1, g_sigqueue_signal_handler_call_count);
}
TEST(signal, pthread_sigqueue_self) {
ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO);
sigval_t sigval;
sigval.sival_int = 1;
errno = 0;
ASSERT_EQ(0, pthread_sigqueue(pthread_self(), SIGALRM, sigval));
ASSERT_EQ(0, errno);
ASSERT_EQ(1, g_sigqueue_signal_handler_call_count);
}
TEST(signal, pthread_sigqueue_other) {
ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO);
sigval_t sigval;
sigval.sival_int = 1;
sigset_t mask;
sigfillset(&mask);
pthread_sigmask(SIG_SETMASK, &mask, nullptr);
pthread_t thread;
int rc = pthread_create(&thread, nullptr,
[](void*) -> void* {
sigset_t mask;
sigemptyset(&mask);
sigsuspend(&mask);
return nullptr;
},
nullptr);
ASSERT_EQ(0, rc);
errno = 0;
ASSERT_EQ(0, pthread_sigqueue(thread, SIGALRM, sigval));
ASSERT_EQ(0, errno);
pthread_join(thread, nullptr);
ASSERT_EQ(1, g_sigqueue_signal_handler_call_count);
}
TEST(signal, sigwaitinfo) {
SignalMaskRestorer smr;
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr));
// Raise SIGALRM.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
errno = 0;
ASSERT_EQ(SIGALRM, sigwaitinfo(&just_SIGALRM, &info));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, info.si_signo);
ASSERT_EQ(1, info.si_value.sival_int);
}
TEST(signal, sigwaitinfo64_SIGRTMIN) {
SignalMaskRestorer smr;
// Block SIGRTMIN.
sigset64_t just_SIGRTMIN;
sigemptyset64(&just_SIGRTMIN);
sigaddset64(&just_SIGRTMIN, SIGRTMIN);
ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr));
// Raise SIGRTMIN.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGRTMIN, sigval));
// Get pending SIGRTMIN.
siginfo_t info;
errno = 0;
ASSERT_EQ(SIGRTMIN, sigwaitinfo64(&just_SIGRTMIN, &info));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGRTMIN, info.si_signo);
ASSERT_EQ(1, info.si_value.sival_int);
}
TEST(signal, sigtimedwait) {
SignalMaskRestorer smr;
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr));
// Raise SIGALRM.
sigval_t sigval = { .sival_int = 1 };
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
timespec timeout = { .tv_sec = 2, .tv_nsec = 0 };
errno = 0;
ASSERT_EQ(SIGALRM, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(0, errno);
}
TEST(signal, sigtimedwait64_SIGRTMIN) {
SignalMaskRestorer smr;
// Block SIGRTMIN.
sigset64_t just_SIGRTMIN;
sigemptyset64(&just_SIGRTMIN);
sigaddset64(&just_SIGRTMIN, SIGRTMIN);
ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr));
// Raise SIGALRM.
sigval_t sigval = { .sival_int = 1 };
ASSERT_EQ(0, sigqueue(getpid(), SIGRTMIN, sigval));
// Get pending SIGALRM.
siginfo_t info;
timespec timeout = { .tv_sec = 2, .tv_nsec = 0 };
errno = 0;
ASSERT_EQ(SIGRTMIN, sigtimedwait64(&just_SIGRTMIN, &info, &timeout));
ASSERT_EQ(0, errno);
}
static int64_t NanoTime() {
timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
TEST(signal, sigtimedwait_timeout) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Wait timeout.
int64_t start_time = NanoTime();
siginfo_t info;
timespec timeout = { .tv_sec = 0, .tv_nsec = 1000000 };
errno = 0;
ASSERT_EQ(-1, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(EAGAIN, errno);
ASSERT_GE(NanoTime() - start_time, 1000000);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, nullptr));
}
#if defined(__BIONIC__)
TEST(signal, rt_tgsigqueueinfo) {
// Test whether rt_tgsigqueueinfo allows sending arbitrary si_code values to self.
// If this fails, your kernel needs commit 66dd34a to be backported.
static constexpr char error_msg[] =
"\nPlease ensure that the following kernel patch has been applied:\n"
"* https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=66dd34ad31e5963d72a700ec3f2449291d322921\n";
static siginfo received;
struct sigaction handler = {};
handler.sa_sigaction = [](int, siginfo_t* siginfo, void*) { received = *siginfo; };
handler.sa_flags = SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGUSR1, &handler, nullptr));
siginfo sent;
memset(&sent, 0, sizeof(sent));
sent.si_code = SI_TKILL;
ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent))
<< "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg;
ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected "
<< sent.si_code << ", received " << received.si_code
<< error_msg;
sent.si_code = SI_USER;
ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent))
<< "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg;
ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected "
<< sent.si_code << ", received " << received.si_code
<< error_msg;
}
#endif
TEST(signal, sigset_size) {
// The setjmp implementations for ARM, AArch64, x86, and x86_64 assume that sigset_t can fit in a
// long. This is true because ARM and x86 have broken rt signal support, and AArch64 and x86_64
// both have a SIGRTMAX defined as 64.
#if defined(__arm__) || defined(__aarch64__) || defined(__i386__) || defined(__x86_64__)
#if defined(__BIONIC__)
static_assert(sizeof(sigset_t) <= sizeof(long), "sigset_t doesn't fit in a long");
#endif
static_assert(sizeof(sigset64_t)*8 >= 64, "sigset64_t too small for real-time signals");
#endif
}
TEST(signal, sigignore_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigignore(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigignore) {
errno = 0;
EXPECT_EQ(-1, sigignore(SIGKILL));
EXPECT_EQ(errno, EINVAL);
errno = 0;
EXPECT_EQ(-1, sigignore(SIGSTOP));
EXPECT_EQ(errno, EINVAL);
ScopedSignalHandler sigalrm{SIGALRM};
ASSERT_EQ(0, sigignore(SIGALRM));
struct sigaction sa;
ASSERT_EQ(0, sigaction(SIGALRM, nullptr, &sa));
EXPECT_EQ(SIG_IGN, sa.sa_handler);
}
TEST(signal, sighold_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sighold(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigpause_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigpause(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigrelse_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigpause(99999));
ASSERT_EQ(EINVAL, errno);
}
static void TestSigholdSigpauseSigrelse(int sig) {
static int signal_handler_call_count = 0;
ScopedSignalHandler ssh{sig, [](int) { signal_handler_call_count++; }};
SignalMaskRestorer mask_restorer;
sigset_t set;
// sighold(SIGALRM/SIGRTMIN) should add SIGALRM/SIGRTMIN to the signal mask ...
ASSERT_EQ(0, sighold(sig));
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set));
EXPECT_TRUE(sigismember(&set, sig));
// ... preventing our SIGALRM/SIGRTMIN handler from running ...
raise(sig);
ASSERT_EQ(0, signal_handler_call_count);
// ... until sigpause(SIGALRM/SIGRTMIN) temporarily unblocks it.
ASSERT_EQ(-1, sigpause(sig));
ASSERT_EQ(EINTR, errno);
ASSERT_EQ(1, signal_handler_call_count);
if (sig >= SIGRTMIN && sizeof(void*) == 8) {
// But sigpause(SIGALRM/SIGRTMIN) shouldn't permanently unblock SIGALRM/SIGRTMIN.
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set));
EXPECT_TRUE(sigismember(&set, sig));
// Whereas sigrelse(SIGALRM/SIGRTMIN) should.
ASSERT_EQ(0, sigrelse(sig));
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, sig));
} else {
// sigismember won't work for SIGRTMIN on LP32.
}
}
TEST(signal, sighold_sigpause_sigrelse) {
TestSigholdSigpauseSigrelse(SIGALRM);
}
TEST(signal, sighold_sigpause_sigrelse_RT) {
TestSigholdSigpauseSigrelse(SIGRTMIN);
}
TEST(signal, sigset_EINVAL) {
errno = 0;
ASSERT_EQ(SIG_ERR, sigset(99999, SIG_DFL));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigset_RT) {
static int signal_handler_call_count = 0;
auto signal_handler = [](int) { signal_handler_call_count++; };
ScopedSignalHandler ssh{SIGRTMIN, signal_handler};
SignalMaskRestorer mask_restorer;
ASSERT_EQ(signal_handler, sigset(SIGRTMIN, SIG_HOLD));
#if defined(__LP64__)
sigset_t set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
ASSERT_TRUE(sigismember(&set, SIGRTMIN));
#endif
ASSERT_EQ(SIG_HOLD, sigset(SIGRTMIN, signal_handler));
ASSERT_EQ(signal_handler, sigset(SIGRTMIN, signal_handler));
ASSERT_EQ(0, signal_handler_call_count);
raise(SIGRTMIN);
ASSERT_EQ(1, signal_handler_call_count);
}
TEST(signal, sigset) {
static int signal_handler_call_count = 0;
auto signal_handler = [](int) { signal_handler_call_count++; };
ScopedSignalHandler ssh{SIGALRM, signal_handler};
SignalMaskRestorer mask_restorer;
ASSERT_EQ(0, signal_handler_call_count);
raise(SIGALRM);
ASSERT_EQ(1, signal_handler_call_count);
// Block SIGALRM so the next sigset(SIGARLM) call will return SIG_HOLD.
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &set, nullptr));
sigemptyset(&set);
ASSERT_EQ(SIG_HOLD, sigset(SIGALRM, signal_handler));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(signal_handler, sigset(SIGALRM, SIG_IGN));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(SIG_IGN, sigset(SIGALRM, SIG_DFL));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(SIG_DFL, sigset(SIGALRM, SIG_HOLD));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_TRUE(sigismember(&set, SIGALRM));
}
TEST(signal, killpg_EINVAL) {
// POSIX leaves pgrp <= 1 undefined, but glibc fails with EINVAL for < 0
// and passes 0 through to kill(2).
errno = 0;
ASSERT_EQ(-1, killpg(-1, SIGKILL));
ASSERT_EQ(EINVAL, errno);
}