/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "pthread_internal.h" #include "private/bionic_futex.h" #include "private/bionic_time_conversions.h" #include "private/bionic_tls.h" // XXX *technically* there is a race condition that could allow // XXX a signal to be missed. If thread A is preempted in _wait() // XXX after unlocking the mutex and before waiting, and if other // XXX threads call signal or broadcast UINT_MAX/2 times (exactly), // XXX before thread A is scheduled again and calls futex_wait(), // XXX then the signal will be lost. // We use one bit in pthread_condattr_t (long) values as the 'shared' flag // and one bit for the clock type (CLOCK_REALTIME is 0 and // CLOCK_MONOTONIC is 1). The rest of the bits are a counter. // // The 'value' field in pthread_cond_t has the same layout. #define COND_SHARED_MASK 0x0001 #define COND_CLOCK_MASK 0x0002 #define COND_COUNTER_STEP 0x0004 #define COND_FLAGS_MASK (COND_SHARED_MASK | COND_CLOCK_MASK) #define COND_COUNTER_MASK (~COND_FLAGS_MASK) #define COND_IS_SHARED(c) (((c) & COND_SHARED_MASK) != 0) #define COND_GET_CLOCK(c) (((c) & COND_CLOCK_MASK) >> 1) #define COND_SET_CLOCK(attr, c) ((attr) | (c << 1)) int pthread_condattr_init(pthread_condattr_t* attr) { *attr = 0; *attr |= PTHREAD_PROCESS_PRIVATE; *attr |= (CLOCK_REALTIME << 1); return 0; } int pthread_condattr_getpshared(const pthread_condattr_t* attr, int* pshared) { *pshared = static_cast(COND_IS_SHARED(*attr)); return 0; } int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared) { if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE) { return EINVAL; } *attr |= pshared; return 0; } int pthread_condattr_getclock(const pthread_condattr_t* attr, clockid_t* clock) { *clock = COND_GET_CLOCK(*attr); return 0; } int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) { if (clock != CLOCK_MONOTONIC && clock != CLOCK_REALTIME) { return EINVAL; } *attr = COND_SET_CLOCK(*attr, clock); return 0; } int pthread_condattr_destroy(pthread_condattr_t* attr) { *attr = 0xdeada11d; return 0; } struct pthread_cond_internal_t { atomic_uint state; bool process_shared() { return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed)); } bool use_realtime_clock() { return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME; } #if defined(__LP64__) char __reserved[44]; #endif }; static_assert(sizeof(pthread_cond_t) == sizeof(pthread_cond_internal_t), "pthread_cond_t should actually be pthread_cond_internal_t in implementation."); // For binary compatibility with old version of pthread_cond_t, we can't use more strict alignment // than 4-byte alignment. static_assert(alignof(pthread_cond_t) == 4, "pthread_cond_t should fulfill the alignment requirement of pthread_cond_internal_t."); static pthread_cond_internal_t* __get_internal_cond(pthread_cond_t* cond_interface) { return reinterpret_cast(cond_interface); } int pthread_cond_init(pthread_cond_t* cond_interface, const pthread_condattr_t* attr) { pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); unsigned int init_state = 0; if (attr != NULL) { init_state = (*attr & COND_FLAGS_MASK); } atomic_init(&cond->state, init_state); return 0; } int pthread_cond_destroy(pthread_cond_t* cond_interface) { pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); atomic_store_explicit(&cond->state, 0xdeadc04d, memory_order_relaxed); return 0; } // This function is used by pthread_cond_broadcast and // pthread_cond_signal to atomically decrement the counter // then wake up thread_count threads. static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count) { // We don't use a release/seq_cst fence here. Because pthread_cond_wait/signal can't be // used as a method for memory synchronization by itself. It should always be used with // pthread mutexes. Note that Spurious wakeups from pthread_cond_wait/timedwait may occur, // so when using condition variables there is always a boolean predicate involving shared // variables associated with each condition wait that is true if the thread should proceed. // If the predicate is seen true before a condition wait, pthread_cond_wait/timedwait will // not be called. That's why pthread_wait/signal pair can't be used as a method for memory // synchronization. And it doesn't help even if we use any fence here. // The increase of value should leave flags alone, even if the value can overflows. atomic_fetch_add_explicit(&cond->state, COND_COUNTER_STEP, memory_order_relaxed); __futex_wake_ex(&cond->state, cond->process_shared(), thread_count); return 0; } static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex, bool use_realtime_clock, const timespec* abs_timeout_or_null) { int result = check_timespec(abs_timeout_or_null, true); if (result != 0) { return result; } unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed); pthread_mutex_unlock(mutex); int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state, use_realtime_clock, abs_timeout_or_null); pthread_mutex_lock(mutex); if (status == -ETIMEDOUT) { return ETIMEDOUT; } return 0; } int pthread_cond_broadcast(pthread_cond_t* cond_interface) { return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX); } int pthread_cond_signal(pthread_cond_t* cond_interface) { return __pthread_cond_pulse(__get_internal_cond(cond_interface), 1); } int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) { pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); return __pthread_cond_timedwait(cond, mutex, false, nullptr); } int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex, const timespec *abstime) { pthread_cond_internal_t* cond = __get_internal_cond(cond_interface); return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime); } extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, const timespec* abs_timeout) { return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout); } #if !defined(__LP64__) // TODO: this exists only for backward binary compatibility on 32 bit platforms. extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, const timespec* abs_timeout) { return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout); } // Force this function using CLOCK_MONOTONIC because it was always using // CLOCK_MONOTONIC in history. extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, const timespec* rel_timeout) { timespec ts; timespec* abs_timeout = nullptr; if (rel_timeout != nullptr) { absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_MONOTONIC); abs_timeout = &ts; } return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout); } extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, unsigned ms) { timespec ts; timespec_from_ms(ts, ms); return pthread_cond_timedwait_relative_np(cond_interface, mutex, &ts); } #endif // !defined(__LP64__)