/* Copyright (c) 2014, Linaro Limited All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Linaro nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Assumptions: * * ARMv8-a, AArch64 */ #include /* Parameters and result. */ #define src1 x0 #define src2 x1 #define limit x2 #define result x0 /* Internal variables. */ #define data1 x3 #define data1w w3 #define data2 x4 #define data2w w4 #define has_nul x5 #define diff x6 #define endloop x7 #define tmp1 x8 #define tmp2 x9 #define tmp3 x10 #define pos x11 #define limit_wd x12 #define mask x13 ENTRY(memcmp) cbz limit, .Lret0 eor tmp1, src1, src2 tst tmp1, #7 b.ne .Lmisaligned8 ands tmp1, src1, #7 b.ne .Lmutual_align add limit_wd, limit, #7 lsr limit_wd, limit_wd, #3 /* Start of performance-critical section -- one 64B cache line. */ .Lloop_aligned: ldr data1, [src1], #8 ldr data2, [src2], #8 .Lstart_realigned: subs limit_wd, limit_wd, #1 eor diff, data1, data2 /* Non-zero if differences found. */ csinv endloop, diff, xzr, ne /* Last Dword or differences. */ cbz endloop, .Lloop_aligned /* End of performance-critical section -- one 64B cache line. */ /* Not reached the limit, must have found a diff. */ cbnz limit_wd, .Lnot_limit /* Limit % 8 == 0 => all bytes significant. */ ands limit, limit, #7 b.eq .Lnot_limit lsl limit, limit, #3 /* Bits -> bytes. */ mov mask, #~0 #ifdef __AARCH64EB__ lsr mask, mask, limit #else lsl mask, mask, limit #endif bic data1, data1, mask bic data2, data2, mask orr diff, diff, mask .Lnot_limit: #ifndef __AARCH64EB__ rev diff, diff rev data1, data1 rev data2, data2 #endif /* The MS-non-zero bit of DIFF marks either the first bit that is different, or the end of the significant data. Shifting left now will bring the critical information into the top bits. */ clz pos, diff lsl data1, data1, pos lsl data2, data2, pos /* But we need to zero-extend (char is unsigned) the value and then perform a signed 32-bit subtraction. */ lsr data1, data1, #56 sub result, data1, data2, lsr #56 ret .Lmutual_align: /* Sources are mutually aligned, but are not currently at an alignment boundary. Round down the addresses and then mask off the bytes that precede the start point. */ bic src1, src1, #7 bic src2, src2, #7 add limit, limit, tmp1 /* Adjust the limit for the extra. */ lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ ldr data1, [src1], #8 neg tmp1, tmp1 /* Bits to alignment -64. */ ldr data2, [src2], #8 mov tmp2, #~0 #ifdef __AARCH64EB__ /* Big-endian. Early bytes are at MSB. */ lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */ #else /* Little-endian. Early bytes are at LSB. */ lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */ #endif add limit_wd, limit, #7 orr data1, data1, tmp2 orr data2, data2, tmp2 lsr limit_wd, limit_wd, #3 b .Lstart_realigned .Lret0: mov result, #0 ret .p2align 6 .Lmisaligned8: sub limit, limit, #1 1: /* Perhaps we can do better than this. */ ldrb data1w, [src1], #1 ldrb data2w, [src2], #1 subs limit, limit, #1 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ b.eq 1b sub result, data1, data2 ret END(memcmp)