Make bionic-unit-tests default run isolate mode.

Fix bug of handling signal terminated tests.

Bug: 17589740
Bug: 18951146
Change-Id: I4803382b26cd5454693090202b3ba38e3dbe66e5
This commit is contained in:
Yabin Cui 2015-01-02 18:45:37 -08:00
parent 597800f1d7
commit be837360c3
1 changed files with 224 additions and 206 deletions

View File

@ -42,8 +42,8 @@ enum GTestColor {
void ColoredPrintf(GTestColor color, const char* fmt, ...); void ColoredPrintf(GTestColor color, const char* fmt, ...);
} // namespace internal } // namespace internal
} // namespace testing } // namespace testing
using testing::internal::GTestColor; using testing::internal::GTestColor;
using testing::internal::COLOR_DEFAULT; using testing::internal::COLOR_DEFAULT;
@ -73,6 +73,24 @@ static int GetWarnlineInfo(const std::string& /*test_name*/) {
return global_test_run_warnline_in_ms; return global_test_run_warnline_in_ms;
} }
static void PrintHelpInfo() {
printf("Bionic Unit Test Options:\n"
" -j [JOB_COUNT]\n"
" Run up to JOB_COUNT tests in parallel.\n"
" Use isolation mode, Run each test in a separate process.\n"
" If JOB_COUNT is not given, it is set to the count of available processors.\n"
" --no-isolate\n"
" Don't use isolation mode, run all tests in a single process.\n"
" --deadline=[TIME_IN_MS]\n"
" Run each test in no longer than [TIME_IN_MS] time.\n"
" It takes effect only in isolation mode. Deafult deadline is 60000 ms.\n"
" --warnline=[TIME_IN_MS]\n"
" Test running longer than [TIME_IN_MS] will be warned.\n"
" It takes effect only in isolation mode. Default warnline is 2000 ms.\n"
"\nDefault bionic unit test option is -j.\n"
"\n");
}
enum TestResult { enum TestResult {
TEST_SUCCESS = 0, TEST_SUCCESS = 0,
TEST_FAILED, TEST_FAILED,
@ -90,37 +108,37 @@ class TestCase {
test_list_.push_back(std::make_tuple(test_name, TEST_FAILED, 0LL)); test_list_.push_back(std::make_tuple(test_name, TEST_FAILED, 0LL));
} }
int NumTests() const { return test_list_.size(); } size_t TestCount() const { return test_list_.size(); }
std::string GetTestName(int test_id) const { std::string GetTestName(size_t test_id) const {
VerifyTestId(test_id); VerifyTestId(test_id);
return name_ + "." + std::get<0>(test_list_[test_id]); return name_ + "." + std::get<0>(test_list_[test_id]);
} }
void SetTestResult(int test_id, TestResult result) { void SetTestResult(size_t test_id, TestResult result) {
VerifyTestId(test_id); VerifyTestId(test_id);
std::get<1>(test_list_[test_id]) = result; std::get<1>(test_list_[test_id]) = result;
} }
TestResult GetTestResult(int test_id) const { TestResult GetTestResult(size_t test_id) const {
VerifyTestId(test_id); VerifyTestId(test_id);
return std::get<1>(test_list_[test_id]); return std::get<1>(test_list_[test_id]);
} }
void SetTestTime(int test_id, int64_t elapsed_time) { void SetTestTime(size_t test_id, int64_t elapsed_time) {
VerifyTestId(test_id); VerifyTestId(test_id);
std::get<2>(test_list_[test_id]) = elapsed_time; std::get<2>(test_list_[test_id]) = elapsed_time;
} }
int64_t GetTestTime(int test_id) const { int64_t GetTestTime(size_t test_id) const {
VerifyTestId(test_id); VerifyTestId(test_id);
return std::get<2>(test_list_[test_id]); return std::get<2>(test_list_[test_id]);
} }
private: private:
void VerifyTestId(int test_id) const { void VerifyTestId(size_t test_id) const {
if(test_id < 0 || test_id >= static_cast<int>(test_list_.size())) { if(test_id >= test_list_.size()) {
fprintf(stderr, "test_id %d out of range [0, %zu)\n", test_id, test_list_.size()); fprintf(stderr, "test_id %zu out of range [0, %zu)\n", test_id, test_list_.size());
exit(1); exit(1);
} }
} }
@ -167,15 +185,15 @@ void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result)
int towrite = strlen(buf); int towrite = strlen(buf);
char* p = buf; char* p = buf;
while (towrite > 0) { while (towrite > 0) {
ssize_t num_write = write(fileno(stdout), p, towrite); ssize_t write_count = write(fileno(stdout), p, towrite);
if (num_write == -1) { if (write_count == -1) {
if (errno != EINTR) { if (errno != EINTR) {
fprintf(stderr, "write, errno = %d\n", errno); fprintf(stderr, "write, errno = %d\n", errno);
break; break;
} }
} else { } else {
towrite -= num_write; towrite -= write_count;
p += num_write; p += write_count;
} }
} }
} }
@ -265,46 +283,36 @@ static bool EnumerateTests(int argc, char** argv, std::vector<TestCase>& testcas
return (result != -1 && WEXITSTATUS(result) == 0); return (result != -1 && WEXITSTATUS(result) == 0);
} }
static void PrintHelpInfo() {
printf("Bionic Unit Test Options:\n"
" --isolate\n"
" Use isolation mode, Run each test in a separate process.\n"
" --deadline=[TIME_IN_MS]\n"
" Run each test in no longer than [TIME_IN_MS] time.\n"
" It takes effect only in isolation mode. Deafult deadline is 60000 ms.\n"
" --warnline=[TIME_IN_MS]\n"
" Test running longer than [TIME_IN_MS] will be warned.\n"
" It takes effect only in isolation mode. Default warnline is 2000 ms.\n"
" -j [JOB_NUM]\n"
" Run up to JOB_NUM tests in parallel.\n"
" Use isolation mode, Run each test in a separate process.\n"
" If JOB_NUM is not given, it is set to the number of cpus available.\n"
"\n");
}
// Part of the following *Print functions are copied from external/gtest/src/gtest.cc: // Part of the following *Print functions are copied from external/gtest/src/gtest.cc:
// PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter // PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter
// is defined and used in gtest.cc, which is hard to reuse. // is defined and used in gtest.cc, which is hard to reuse.
static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, int iteration, static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, size_t iteration,
int num_iterations) { size_t iteration_count) {
if (num_iterations > 1) { if (iteration_count > 1) {
printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration); printf("\nRepeating all tests (iteration %zu) . . .\n\n", iteration);
} }
ColoredPrintf(COLOR_GREEN, "[==========] "); ColoredPrintf(COLOR_GREEN, "[==========] ");
int num_testcases = testcase_list.size(); size_t testcase_count = testcase_list.size();
int num_tests = 0; size_t test_count = 0;
for (const auto& testcase : testcase_list) { for (const auto& testcase : testcase_list) {
num_tests += testcase.NumTests(); test_count += testcase.TestCount();
} }
printf("Running %d %s from %d %s.\n", printf("Running %zu %s from %zu %s.\n",
num_tests, (num_tests == 1) ? "test" : "tests", test_count, (test_count == 1) ? "test" : "tests",
num_testcases, (num_testcases == 1) ? "test case" : "test cases"); testcase_count, (testcase_count == 1) ? "test case" : "test cases");
fflush(stdout); fflush(stdout);
} }
static void OnTestTimeoutPrint(const TestCase& testcase, int test_id) { static void OnTestTerminatedPrint(const TestCase& testcase, size_t test_id, int sig) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s terminated by signal: %s\n", testcase.GetTestName(test_id).c_str(),
strsignal(sig));
fflush(stdout);
}
static void OnTestTimeoutPrint(const TestCase& testcase, size_t test_id) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (killed by timeout at %lld ms)\n", testcase.GetTestName(test_id).c_str(), printf("%s (killed by timeout at %lld ms)\n", testcase.GetTestName(test_id).c_str(),
testcase.GetTestTime(test_id) / 1000000LL); testcase.GetTestTime(test_id) / 1000000LL);
@ -313,17 +321,17 @@ static void OnTestTimeoutPrint(const TestCase& testcase, int test_id) {
static void TestcaseTimePrint(const TestCase& testcase) { static void TestcaseTimePrint(const TestCase& testcase) {
int64_t testcase_time = 0; int64_t testcase_time = 0;
for (int i = 0; i < testcase.NumTests(); ++i) { for (size_t i = 0; i < testcase.TestCount(); ++i) {
testcase_time += testcase.GetTestTime(i); testcase_time += testcase.GetTestTime(i);
} }
printf("%d %s from %s (%lld ms total)\n", testcase.NumTests(), printf("%zu %s from %s (%lld ms total)\n", testcase.TestCount(),
(testcase.NumTests() == 1) ? "test" : "tests", (testcase.TestCount() == 1) ? "test" : "tests",
testcase.GetName().c_str(), testcase.GetName().c_str(),
testcase_time / 1000000LL); testcase_time / 1000000LL);
fflush(stdout); fflush(stdout);
} }
static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, int /*iteration*/, static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, size_t /*iteration*/,
int64_t elapsed_time) { int64_t elapsed_time) {
std::vector<std::string> fail_test_name_list; std::vector<std::string> fail_test_name_list;
@ -331,16 +339,16 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
// For tests run exceed warnline but not timeout. // For tests run exceed warnline but not timeout.
std::vector<std::tuple<std::string, int64_t, int>> timewarn_test_list; std::vector<std::tuple<std::string, int64_t, int>> timewarn_test_list;
int num_testcases = testcase_list.size(); size_t testcase_count = testcase_list.size();
int num_tests = 0; size_t test_count = 0;
int num_success_tests = 0; size_t success_test_count = 0;
for (const auto& testcase : testcase_list) { for (const auto& testcase : testcase_list) {
num_tests += testcase.NumTests(); test_count += testcase.TestCount();
for (int i = 0; i < testcase.NumTests(); ++i) { for (size_t i = 0; i < testcase.TestCount(); ++i) {
TestResult result = testcase.GetTestResult(i); TestResult result = testcase.GetTestResult(i);
if (result == TEST_SUCCESS) { if (result == TEST_SUCCESS) {
++num_success_tests; ++success_test_count;
} else if (result == TEST_FAILED) { } else if (result == TEST_FAILED) {
fail_test_name_list.push_back(testcase.GetTestName(i)); fail_test_name_list.push_back(testcase.GetTestName(i));
} else if (result == TEST_TIMEOUT) { } else if (result == TEST_TIMEOUT) {
@ -361,20 +369,20 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
} }
ColoredPrintf(COLOR_GREEN, "[==========] "); ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("%d %s from %d %s ran.", num_tests, (num_tests == 1) ? "test" : "tests", printf("%zu %s from %zu %s ran.", test_count, (test_count == 1) ? "test" : "tests",
num_testcases, (num_testcases == 1) ? "test case" : "test cases"); testcase_count, (testcase_count == 1) ? "test case" : "test cases");
if (testing::GTEST_FLAG(print_time)) { if (testing::GTEST_FLAG(print_time)) {
printf(" (%lld ms total)", elapsed_time / 1000000LL); printf(" (%lld ms total)", elapsed_time / 1000000LL);
} }
printf("\n"); printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); ColoredPrintf(COLOR_GREEN, "[ PASSED ] ");
printf("%d %s.\n", num_success_tests, (num_success_tests == 1) ? "test" : "tests"); printf("%zu %s.\n", success_test_count, (success_test_count == 1) ? "test" : "tests");
// Print tests failed. // Print tests failed.
int num_fail_tests = fail_test_name_list.size(); size_t fail_test_count = fail_test_name_list.size();
if (num_fail_tests > 0) { if (fail_test_count > 0) {
ColoredPrintf(COLOR_RED, "[ FAILED ] "); ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%d %s, listed below:\n", num_fail_tests, (num_fail_tests == 1) ? "test" : "tests"); printf("%zu %s, listed below:\n", fail_test_count, (fail_test_count == 1) ? "test" : "tests");
for (const auto& name : fail_test_name_list) { for (const auto& name : fail_test_name_list) {
ColoredPrintf(COLOR_RED, "[ FAILED ] "); ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s\n", name.c_str()); printf("%s\n", name.c_str());
@ -382,10 +390,10 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
} }
// Print tests run timeout. // Print tests run timeout.
int num_timeout_tests = timeout_test_list.size(); size_t timeout_test_count = timeout_test_list.size();
if (num_timeout_tests > 0) { if (timeout_test_count > 0) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%d %s, listed below:\n", num_timeout_tests, (num_timeout_tests == 1) ? "test" : "tests"); printf("%zu %s, listed below:\n", timeout_test_count, (timeout_test_count == 1) ? "test" : "tests");
for (const auto& timeout_pair : timeout_test_list) { for (const auto& timeout_pair : timeout_test_list) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] "); ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (stopped at %lld ms)\n", timeout_pair.first.c_str(), printf("%s (stopped at %lld ms)\n", timeout_pair.first.c_str(),
@ -394,10 +402,10 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
} }
// Print tests run exceed warnline. // Print tests run exceed warnline.
int num_timewarn_tests = timewarn_test_list.size(); size_t timewarn_test_count = timewarn_test_list.size();
if (num_timewarn_tests > 0) { if (timewarn_test_count > 0) {
ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] "); ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] ");
printf("%d %s, listed below:\n", num_timewarn_tests, (num_timewarn_tests == 1) ? "test" : "tests"); printf("%zu %s, listed below:\n", timewarn_test_count, (timewarn_test_count == 1) ? "test" : "tests");
for (const auto& timewarn_tuple : timewarn_test_list) { for (const auto& timewarn_tuple : timewarn_test_list) {
ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] "); ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] ");
printf("%s (%lld ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(), printf("%s (%lld ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(),
@ -406,14 +414,14 @@ static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list,
} }
} }
if (num_fail_tests > 0) { if (fail_test_count > 0) {
printf("\n%2d FAILED %s\n", num_fail_tests, (num_fail_tests == 1) ? "TEST" : "TESTS"); printf("\n%2zu FAILED %s\n", fail_test_count, (fail_test_count == 1) ? "TEST" : "TESTS");
} }
if (num_timeout_tests > 0) { if (timeout_test_count > 0) {
printf("%2d TIMEOUT %s\n", num_timeout_tests, (num_timeout_tests == 1) ? "TEST" : "TESTS"); printf("%2zu TIMEOUT %s\n", timeout_test_count, (timeout_test_count == 1) ? "TEST" : "TESTS");
} }
if (num_timewarn_tests > 0) { if (timewarn_test_count > 0) {
printf("%2d TIMEWARN %s\n", num_timewarn_tests, (num_timewarn_tests == 1) ? "TEST" : "TESTS"); printf("%2zu TIMEWARN %s\n", timewarn_test_count, (timewarn_test_count == 1) ? "TEST" : "TESTS");
} }
fflush(stdout); fflush(stdout);
} }
@ -438,19 +446,20 @@ struct ChildProcInfo {
pid_t pid; pid_t pid;
int64_t start_time; int64_t start_time;
int64_t deadline_time; int64_t deadline_time;
int testcase_id, test_id; size_t testcase_id, test_id;
bool done_flag; bool done_flag;
TestResult test_result; bool timeout_flag;
int exit_status;
ChildProcInfo() : pid(0) {} ChildProcInfo() : pid(0) {}
}; };
static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) { static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
pid_t result; pid_t result;
int exit_status; int status;
bool loop_flag = true; bool loop_flag = true;
while (true) { while (true) {
while ((result = waitpid(-1, &exit_status, WNOHANG)) == -1) { while ((result = waitpid(-1, &status, WNOHANG)) == -1) {
if (errno != EINTR) { if (errno != EINTR) {
break; break;
} }
@ -465,7 +474,7 @@ static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
for (size_t i = 0; i < child_proc_list.size(); ++i) { for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].deadline_time <= current_time) { if (child_proc_list[i].deadline_time <= current_time) {
child_proc_list[i].done_flag = true; child_proc_list[i].done_flag = true;
child_proc_list[i].test_result = TEST_TIMEOUT; child_proc_list[i].timeout_flag = true;
loop_flag = false; loop_flag = false;
} }
} }
@ -474,8 +483,8 @@ static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
for (size_t i = 0; i < child_proc_list.size(); ++i) { for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].pid == result) { if (child_proc_list[i].pid == result) {
child_proc_list[i].done_flag = true; child_proc_list[i].done_flag = true;
child_proc_list[i].test_result = (WEXITSTATUS(exit_status) == 0) ? TEST_SUCCESS : child_proc_list[i].timeout_flag = false;
TEST_FAILED; child_proc_list[i].exit_status = status;
loop_flag = false; loop_flag = false;
break; break;
} }
@ -511,26 +520,32 @@ static TestResult WaitChildProc(pid_t pid) {
// We choose to use multi-fork and multi-wait here instead of multi-thread, because it always // We choose to use multi-fork and multi-wait here instead of multi-thread, because it always
// makes deadlock to use fork in multi-thread. // makes deadlock to use fork in multi-thread.
static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list, static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list,
int num_iterations, int num_jobs) { size_t iteration_count, size_t job_count) {
// Stop default result printer to avoid environment setup/teardown information for each test. // Stop default result printer to avoid environment setup/teardown information for each test.
testing::UnitTest::GetInstance()->listeners().Release( testing::UnitTest::GetInstance()->listeners().Release(
testing::UnitTest::GetInstance()->listeners().default_result_printer()); testing::UnitTest::GetInstance()->listeners().default_result_printer());
testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter); testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter);
for (int iteration = 1; iteration <= num_iterations; ++iteration) { for (size_t iteration = 1; iteration <= iteration_count; ++iteration) {
OnTestIterationStartPrint(testcase_list, iteration, num_iterations); OnTestIterationStartPrint(testcase_list, iteration, iteration_count);
int64_t iteration_start_time = NanoTime(); int64_t iteration_start_time = NanoTime();
std::vector<ChildProcInfo> child_proc_list(num_jobs); // Run up to job_count tests in parallel, each test in a child process.
int assign_testcase = 0, assign_test = 0; std::vector<ChildProcInfo> child_proc_list(job_count);
std::vector<int> finish_test_num_list(testcase_list.size(), 0);
int num_finish_testcases = 0;
while (num_finish_testcases < static_cast<int>(testcase_list.size())) { // Next test to run is [next_testcase_id:next_test_id].
// Fork child process up to num_jobs. size_t next_testcase_id = 0;
size_t next_test_id = 0;
// Record how many tests are finished.
std::vector<size_t> finished_test_count_list(testcase_list.size(), 0);
size_t finished_testcase_count = 0;
while (finished_testcase_count < testcase_list.size()) {
// Fork up to job_count child processes.
for (auto& child_proc : child_proc_list) { for (auto& child_proc : child_proc_list) {
if (child_proc.pid == 0 && assign_testcase < static_cast<int>(testcase_list.size())) { if (child_proc.pid == 0 && next_testcase_id < testcase_list.size()) {
std::string test_name = testcase_list[assign_testcase].GetTestName(assign_test); std::string test_name = testcase_list[next_testcase_id].GetTestName(next_test_id);
pid_t pid = fork(); pid_t pid = fork();
if (pid == -1) { if (pid == -1) {
perror("fork in RunTestInSeparateProc"); perror("fork in RunTestInSeparateProc");
@ -543,12 +558,12 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
child_proc.pid = pid; child_proc.pid = pid;
child_proc.start_time = NanoTime(); child_proc.start_time = NanoTime();
child_proc.deadline_time = child_proc.start_time + GetDeadlineInfo(test_name) * 1000000LL; child_proc.deadline_time = child_proc.start_time + GetDeadlineInfo(test_name) * 1000000LL;
child_proc.testcase_id = assign_testcase; child_proc.testcase_id = next_testcase_id;
child_proc.test_id = assign_test; child_proc.test_id = next_test_id;
child_proc.done_flag = false; child_proc.done_flag = false;
if (++assign_test == testcase_list[assign_testcase].NumTests()) { if (++next_test_id == testcase_list[next_testcase_id].TestCount()) {
assign_test = 0; next_test_id = 0;
++assign_testcase; ++next_testcase_id;
} }
} }
} }
@ -559,22 +574,31 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
// Collect result. // Collect result.
for (auto& child_proc : child_proc_list) { for (auto& child_proc : child_proc_list) {
if (child_proc.pid != 0 && child_proc.done_flag == true) { if (child_proc.pid != 0 && child_proc.done_flag == true) {
int testcase_id = child_proc.testcase_id; size_t testcase_id = child_proc.testcase_id;
int test_id = child_proc.test_id; size_t test_id = child_proc.test_id;
TestResult test_result = child_proc.test_result; TestCase& testcase = testcase_list[testcase_id];
if (test_result == TEST_TIMEOUT) { testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time);
// Kill and wait the child process.
if (child_proc.timeout_flag) {
// Kill and wait the timeout child process.
kill(child_proc.pid, SIGKILL); kill(child_proc.pid, SIGKILL);
WaitChildProc(child_proc.pid); WaitChildProc(child_proc.pid);
} testcase.SetTestResult(test_id, TEST_TIMEOUT);
TestCase& testcase = testcase_list[testcase_id];
testcase.SetTestResult(test_id, test_result);
testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time);
if (test_result == TEST_TIMEOUT) {
OnTestTimeoutPrint(testcase, test_id); OnTestTimeoutPrint(testcase, test_id);
} else if (WIFSIGNALED(child_proc.exit_status)) {
// Record signal terminated test as failed.
testcase.SetTestResult(test_id, TEST_FAILED);
OnTestTerminatedPrint(testcase, test_id, WTERMSIG(child_proc.exit_status));
} else {
testcase.SetTestResult(test_id, WEXITSTATUS(child_proc.exit_status) == 0 ?
TEST_SUCCESS : TEST_FAILED);
// TestResultPrinter::OnTestEnd has already printed result for normal exit.
} }
if (++finish_test_num_list[testcase_id] == testcase.NumTests()) {
++num_finish_testcases; if (++finished_test_count_list[testcase_id] == testcase.TestCount()) {
++finished_testcase_count;
} }
child_proc.pid = 0; child_proc.pid = 0;
child_proc.done_flag = false; child_proc.done_flag = false;
@ -586,80 +610,64 @@ static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>&
} }
} }
static int GetCpuNumber() { static size_t GetProcessorCount() {
FILE* fp = popen("cat /proc/cpuinfo | grep processor | wc -l", "r"); return static_cast<size_t>(sysconf(_SC_NPROCESSORS_ONLN));
int result = 1; // Return 1 if we can't get the exact cpu number.
if (fp != NULL) {
fscanf(fp, "%d", &result);
if (result < 1) {
result = 1;
}
pclose(fp);
}
return result;
} }
// Pick options not for gtest; Return false if run error. // Pick options not for gtest: There are two parts in argv, one part is handled by PickOptions()
// Use exit_flag to indicate whether we need to run gtest flow after PickOptions. // as described in PrintHelpInfo(), the other part is handled by testing::InitGoogleTest() in
static bool PickOptions(int* pargc, char*** pargv, bool* exit_flag) { // gtest. PickOptions() picks the first part of options and change them into flags and operations,
int argc = *pargc; // lefting the second part in argv.
char** argv = *pargv; // Arguments:
// argv is used to pass in all command arguments, and pass out only the part of options for gtest.
// exit_flag is to indicate whether we need to run gtest workflow after PickOptions.
// Return false if run error.
static bool PickOptions(std::vector<char*>& argv, bool* exit_flag) {
*exit_flag = false; *exit_flag = false;
for (int i = 0; i < argc; ++i) { for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) { if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
PrintHelpInfo(); PrintHelpInfo();
return true; return true;
} }
} }
// Move --gtest_filter option to last, and add "-bionic_gtest*" to disable self test. // Move --gtest_filter option to last, and add "-bionic_selftest*" to disable self test.
int gtest_filter_option_pos = 0; std::string gtest_filter_str = "--gtest_filter=-bionic_selftest*";
for (int i = argc - 1; i >= 1; --i) { for (size_t i = argv.size() - 2; i >= 1; --i) {
if (strncmp(argv[i], "--gtest_filter=", sizeof("--gtest_filter=") - 1) == 0) { if (strncmp(argv[i], "--gtest_filter=", sizeof("--gtest_filter=") - 1) == 0) {
gtest_filter_option_pos = i; gtest_filter_str = std::string(argv[i]) + ":-bionic_selftest*";
argv.erase(argv.begin() + i);
break; break;
} }
} }
if (gtest_filter_option_pos != 0) { argv.insert(argv.end() - 1, strdup(gtest_filter_str.c_str()));
char* gtest_filter_arg = argv[gtest_filter_option_pos];
for (int i = gtest_filter_option_pos; i < argc - 1; ++i) {
argv[i] = argv[i + 1];
}
char* new_arg = new char[strlen(gtest_filter_arg) + sizeof(":-bionic_gtest*")];
strcpy(new_arg, gtest_filter_arg);
strcat(new_arg, ":-bionic_gtest*");
argv[argc - 1] = new_arg;
} else {
char** new_argv = new char* [argc + 1];
for (int i = 0; i < argc; ++i) {
new_argv[i] = argv[i];
}
new_argv[argc++] = const_cast<char*>("--gtest_filter=-bionic_gtest*");
*pargv = argv = new_argv;
}
// Parse bionic_gtest specific options. // Init default bionic_gtest option.
bool isolate_option = false; bool isolate_option = true;
int job_num_option = 1; size_t job_count_option = GetProcessorCount();
int deadline_option_len = sizeof("--deadline=") - 1; size_t deadline_option_len = strlen("--deadline=");
int warnline_option_len = sizeof("--warnline=") - 1; size_t warnline_option_len = strlen("--warnline=");
int gtest_color_option_len = sizeof("--gtest_color=") - 1; size_t gtest_color_option_len = strlen("--gtest_color=");
for (int i = 1; i < argc; ++i) { // Parse bionic_gtest specific options in arguments.
int remove_arg_num = 0; for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strcmp(argv[i], "-j") == 0) {
isolate_option = true; // Enable isolation mode when -j is used.
int tmp;
if (argv[i + 1] != NULL && (tmp = atoi(argv[i + 1])) > 0) {
job_count_option = tmp;
argv.erase(argv.begin() + i);
} else {
job_count_option = GetProcessorCount();
}
argv.erase(argv.begin() + i);
--i;
// If running in isolation mode, main process doesn't call testing::InitGoogleTest(&argc, argv). } else if (strcmp(argv[i], "--no-isolate") == 0) {
// So we should parse gtest options for printing here. isolate_option = false;
if (strncmp(argv[i], "--gtest_color=", gtest_color_option_len) == 0) { argv.erase(argv.begin() + i);
testing::GTEST_FLAG(color) = argv[i] + gtest_color_option_len; --i;
} else if (strcmp(argv[i], "--gtest_print_time=0") == 0) {
testing::GTEST_FLAG(print_time) = false;
} else if (strcmp(argv[i], "--isolate") == 0) {
isolate_option = true;
remove_arg_num = 1;
} else if (strncmp(argv[i], "--deadline=", deadline_option_len) == 0) { } else if (strncmp(argv[i], "--deadline=", deadline_option_len) == 0) {
global_test_run_deadline_in_ms = atoi(argv[i] + deadline_option_len); global_test_run_deadline_in_ms = atoi(argv[i] + deadline_option_len);
@ -668,7 +676,8 @@ static bool PickOptions(int* pargc, char*** pargv, bool* exit_flag) {
argv[i] + deadline_option_len); argv[i] + deadline_option_len);
exit(1); exit(1);
} }
remove_arg_num = 1; argv.erase(argv.begin() + i);
--i;
} else if (strncmp(argv[i], "--warnline=", warnline_option_len) == 0) { } else if (strncmp(argv[i], "--warnline=", warnline_option_len) == 0) {
global_test_run_warnline_in_ms = atoi(argv[i] + warnline_option_len); global_test_run_warnline_in_ms = atoi(argv[i] + warnline_option_len);
@ -677,98 +686,107 @@ static bool PickOptions(int* pargc, char*** pargv, bool* exit_flag) {
argv[i] + warnline_option_len); argv[i] + warnline_option_len);
exit(1); exit(1);
} }
remove_arg_num = 1; argv.erase(argv.begin() + i);
} else if (strcmp(argv[i], "--bionic_gtest") == 0) {
// Enable "bionic_gtest*" for self test.
// Don't remove this option from argument list.
argv[argc - 1] = const_cast<char*>("--gtest_filter=bionic_gtest*");
} else if (strcmp(argv[i], "-j") == 0) {
isolate_option = true; // Enable isolation mode when -j is used.
if (i + 1 < argc && (job_num_option = atoi(argv[i + 1])) > 0) {
remove_arg_num = 2;
} else {
job_num_option = GetCpuNumber();
remove_arg_num = 1;
}
}
if (remove_arg_num != 0) {
for (int j = i; j < argc - remove_arg_num; ++j) {
argv[j] = argv[j + remove_arg_num];
}
argc -= remove_arg_num;
--i; --i;
} else if (strncmp(argv[i], "--gtest_color=", gtest_color_option_len) == 0) {
// If running in isolation mode, main process doesn't call testing::InitGoogleTest(&argc, argv).
// So we should parse gtest options for printing by ourselves.
testing::GTEST_FLAG(color) = argv[i] + gtest_color_option_len;
} else if (strcmp(argv[i], "--gtest_print_time=0") == 0) {
testing::GTEST_FLAG(print_time) = false;
} else if (strcmp(argv[i], "--gtest_list_tests") == 0) {
// Disable isolation mode in gtest_list_tests option.
isolate_option = false;
} else if (strcmp(argv[i], "--bionic-selftest") == 0) {
// This option is to enable "bionic_selftest*" for self test, and not shown in help informantion.
// Don't remove this option from argument list.
argv[argv.size() - 2] = strdup("--gtest_filter=bionic_selftest*");
} }
} }
// Handle --gtest_repeat=[COUNT] option if we are in isolation mode. // Handle --gtest_repeat=[COUNT] option if we are in isolation mode.
// We should check and remove this option to avoid child process running single test for several // We should check and remove this option to avoid child process running single test for several
// iterations. // iterations.
int gtest_repeat_num = 1; size_t gtest_repeat_count = 1;
if (isolate_option == true) { if (isolate_option == true) {
int len = sizeof("--gtest_repeat=") - 1; int len = sizeof("--gtest_repeat=") - 1;
for (int i = 1; i < argc; ++i) { for (size_t i = 1; i < argv.size() - 1; ++i) {
if (strncmp(argv[i], "--gtest_repeat=", len) == 0) { if (strncmp(argv[i], "--gtest_repeat=", len) == 0) {
gtest_repeat_num = atoi(argv[i] + len); int tmp = atoi(argv[i] + len);
if (gtest_repeat_num < 0) { if (tmp < 0) {
fprintf(stderr, "error count for option --gtest_repeat=[COUNT]\n"); fprintf(stderr, "error count for option --gtest_repeat=[COUNT]\n");
return false; return false;
} }
for (int j = i; j < argc - 1; ++j) { gtest_repeat_count = tmp;
argv[j] = argv[j + 1]; argv.erase(argv.begin() + i);
}
--argc;
break; break;
} }
} }
} }
*pargc = argc; // Add --no-isolate option in argv to suppress subprocess running in isolation mode again.
// As DeathTest will try to execve again, this option should always be set.
argv.insert(argv.begin() + 1, strdup("--no-isolate"));
// Run tests in isolation mode. // Run tests in isolation mode.
if (isolate_option) { if (isolate_option) {
*exit_flag = true; *exit_flag = true;
std::vector<TestCase> testcase_list; std::vector<TestCase> testcase_list;
if (EnumerateTests(argc, argv, testcase_list) == false) { int argc = static_cast<int>(argv.size()) - 1;
if (EnumerateTests(argc, argv.data(), testcase_list) == false) {
return false; return false;
} }
RunTestInSeparateProc(argc, argv, testcase_list, gtest_repeat_num, job_num_option); RunTestInSeparateProc(argc, argv.data(), testcase_list, gtest_repeat_count, job_count_option);
return true; return true;
} }
return true; return true;
} }
int main(int argc, char** argv) { int main(int argc, char** argv) {
std::vector<char*> arg_list;
for (int i = 0; i < argc; ++i) {
arg_list.push_back(argv[i]);
}
arg_list.push_back(NULL);
bool exit_flag; bool exit_flag;
int return_result = 0; int return_result = 0;
if (PickOptions(&argc, &argv, &exit_flag) == false) { if (PickOptions(arg_list, &exit_flag) == false) {
return_result = 1; return_result = 1;
} else if (!exit_flag) { } else if (!exit_flag) {
testing::InitGoogleTest(&argc, argv); argc = static_cast<int>(arg_list.size()) - 1;
testing::InitGoogleTest(&argc, arg_list.data());
return_result = RUN_ALL_TESTS(); return_result = RUN_ALL_TESTS();
} }
return return_result; return return_result;
} }
//################################################################################ //################################################################################
// Bionic Gtest self test, run this by --bionic_gtest --isolate option. // Bionic Gtest self test, run this by --bionic-selftest option.
TEST(bionic_gtest, test_success) { TEST(bionic_selftest, test_success) {
ASSERT_EQ(1, 1); ASSERT_EQ(1, 1);
} }
TEST(bionic_gtest, test_fail) { TEST(bionic_selftest, test_fail) {
ASSERT_EQ(0, 1); ASSERT_EQ(0, 1);
} }
TEST(bionic_gtest, test_time_warn) { TEST(bionic_selftest, test_time_warn) {
sleep(4); sleep(4);
} }
TEST(bionic_gtest, test_timeout) { TEST(bionic_selftest, test_timeout) {
while (1) {} while (1) {}
} }
TEST(bionic_selftest, test_signal_SEGV_terminated) {
char* p = reinterpret_cast<char*>(static_cast<intptr_t>(atoi("0")));
*p = 3;
}