Switch pthread_rwlock_t to stdatomic.

Bug: 19099838
Change-Id: Ie82967a60b5cec61a8bdd1e0e4a03738d01944f8
This commit is contained in:
Yabin Cui 2015-02-11 17:04:36 -08:00
parent ee17e88004
commit 08ee8d2030
3 changed files with 227 additions and 90 deletions

View File

@ -27,6 +27,7 @@
*/
#include <errno.h>
#include <stdatomic.h>
#include "pthread_internal.h"
#include "private/bionic_futex.h"
@ -52,11 +53,6 @@
* - This implementation will return EDEADLK in "write after write" and "read after
* write" cases and will deadlock in write after read case.
*
* TODO: VERY CAREFULLY convert this to use C++11 atomics when possible. All volatile
* members of pthread_rwlock_t should be converted to atomics<> and __sync_bool_compare_and_swap
* should be changed to compare_exchange_strong accompanied by the proper ordering
* constraints (comments have been added with the intending ordering across the code).
*
* TODO: As it stands now, pending_readers and pending_writers could be merged into a
* a single waiters variable. Keeping them separate adds a bit of clarity and keeps
* the door open for a writer-biased implementation.
@ -105,8 +101,40 @@ int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* attr, int* pshared
return 0;
}
static inline atomic_int* STATE_ATOMIC_POINTER(pthread_rwlock_t* rwlock) {
static_assert(sizeof(atomic_int) == sizeof(rwlock->state),
"rwlock->state should actually be atomic_int in implementation.");
// We prefer casting to atomic_int instead of declaring rwlock->state to be atomic_int directly.
// Because using the second method pollutes pthread.h, and causes an error when compiling libcxx.
return reinterpret_cast<atomic_int*>(&rwlock->state);
}
static inline atomic_int* WRITER_THREAD_ID_ATOMIC_POINTER(pthread_rwlock_t* rwlock) {
static_assert(sizeof(atomic_int) == sizeof(rwlock->writer_thread_id),
"rwlock->writer_thread_id should actually be atomic_int in implementation.");
return reinterpret_cast<atomic_int*>(&rwlock->writer_thread_id);
}
static inline atomic_uint* PENDING_READERS_ATOMIC_POINTER(pthread_rwlock_t* rwlock) {
static_assert(sizeof(atomic_uint) == sizeof(rwlock->pending_readers),
"rwlock->pending_readers should actually be atomic_uint in implementation.");
return reinterpret_cast<atomic_uint*>(&rwlock->pending_readers);
}
static inline atomic_uint* PENDING_WRITERS_ATOMIC_POINTER(pthread_rwlock_t* rwlock) {
static_assert(sizeof(atomic_uint) == sizeof(rwlock->pending_writers),
"rwlock->pending_writers should actually be atomic_uint in implementation.");
return reinterpret_cast<atomic_uint*>(&rwlock->pending_writers);
}
int pthread_rwlock_init(pthread_rwlock_t* rwlock, const pthread_rwlockattr_t* attr) {
if (attr != NULL) {
if (__predict_true(attr == NULL)) {
rwlock->attr = 0;
} else {
switch (*attr) {
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
@ -117,10 +145,10 @@ int pthread_rwlock_init(pthread_rwlock_t* rwlock, const pthread_rwlockattr_t* at
}
}
rwlock->state = 0;
rwlock->pending_readers = 0;
rwlock->pending_writers = 0;
rwlock->writer_thread_id = 0;
atomic_init(STATE_ATOMIC_POINTER(rwlock), 0);
atomic_init(WRITER_THREAD_ID_ATOMIC_POINTER(rwlock), 0);
atomic_init(PENDING_READERS_ATOMIC_POINTER(rwlock), 0);
atomic_init(PENDING_WRITERS_ATOMIC_POINTER(rwlock), 0);
return 0;
}
@ -133,72 +161,87 @@ int pthread_rwlock_destroy(pthread_rwlock_t* rwlock) {
}
static int __pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
if (__predict_false(__get_thread()->tid == rwlock->writer_thread_id)) {
if (__predict_false(__get_thread()->tid ==
atomic_load_explicit(WRITER_THREAD_ID_ATOMIC_POINTER(rwlock), memory_order_relaxed))) {
return EDEADLK;
}
timespec ts;
timespec* rel_timeout = (abs_timeout == NULL) ? NULL : &ts;
bool done = false;
do {
// This is actually a race read as there's nothing that guarantees the atomicity of integer
// reads / writes. However, in practice this "never" happens so until we switch to C++11 this
// should work fine. The same applies in the other places this idiom is used.
int32_t cur_state = rwlock->state; // C++11 relaxed atomic read
atomic_int* state_ptr = STATE_ATOMIC_POINTER(rwlock);
while (true) {
int cur_state = atomic_load_explicit(state_ptr, memory_order_relaxed);
if (__predict_true(cur_state >= 0)) {
// Add as an extra reader.
done = __sync_bool_compare_and_swap(&rwlock->state, cur_state, cur_state + 1); // C++11 memory_order_aquire
if (atomic_compare_exchange_weak_explicit(state_ptr, &cur_state, cur_state + 1,
memory_order_acquire, memory_order_relaxed)) {
return 0;
}
} else {
if (!timespec_from_absolute(rel_timeout, abs_timeout)) {
return ETIMEDOUT;
}
// Owner holds it in write mode, hang up.
// To avoid losing wake ups the pending_readers update and the state read should be
// sequentially consistent. (currently enforced by __sync_fetch_and_add which creates a full barrier)
__sync_fetch_and_add(&rwlock->pending_readers, 1); // C++11 memory_order_relaxed (if the futex_wait ensures the ordering)
int ret = __futex_wait_ex(&rwlock->state, rwlock_is_shared(rwlock), cur_state, rel_timeout);
__sync_fetch_and_sub(&rwlock->pending_readers, 1); // C++11 memory_order_relaxed
atomic_uint* pending_readers_ptr = PENDING_READERS_ATOMIC_POINTER(rwlock);
// To avoid losing wake ups, the pending_readers increment should be observed before
// futex_wait by all threads. A seq_cst fence instead of a seq_cst operation is used
// here. Because only a seq_cst fence can ensure sequential consistency for non-atomic
// operations in futex_wait.
atomic_fetch_add_explicit(pending_readers_ptr, 1, memory_order_relaxed);
atomic_thread_fence(memory_order_seq_cst);
int ret = __futex_wait_ex(state_ptr, rwlock_is_shared(rwlock), cur_state, rel_timeout);
atomic_fetch_sub_explicit(pending_readers_ptr, 1, memory_order_relaxed);
if (ret == -ETIMEDOUT) {
return ETIMEDOUT;
}
}
} while (!done);
return 0;
}
}
static int __pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock, const timespec* abs_timeout) {
int tid = __get_thread()->tid;
if (__predict_false(tid == rwlock->writer_thread_id)) {
if (__predict_false(__get_thread()->tid ==
atomic_load_explicit(WRITER_THREAD_ID_ATOMIC_POINTER(rwlock), memory_order_relaxed))) {
return EDEADLK;
}
timespec ts;
timespec* rel_timeout = (abs_timeout == NULL) ? NULL : &ts;
bool done = false;
do {
int32_t cur_state = rwlock->state;
atomic_int* state_ptr = STATE_ATOMIC_POINTER(rwlock);
while (true) {
int cur_state = atomic_load_explicit(state_ptr, memory_order_relaxed);
if (__predict_true(cur_state == 0)) {
// Change state from 0 to -1.
done = __sync_bool_compare_and_swap(&rwlock->state, 0 /* cur state */, -1 /* new state */); // C++11 memory_order_aquire
if (atomic_compare_exchange_weak_explicit(state_ptr, &cur_state, -1,
memory_order_acquire, memory_order_relaxed)) {
// writer_thread_id is protected by rwlock and can only be modified in rwlock write
// owner thread. Other threads may read it for EDEADLK error checking, atomic operation
// is safe enough for it.
atomic_store_explicit(WRITER_THREAD_ID_ATOMIC_POINTER(rwlock), __get_thread()->tid,
memory_order_relaxed);
return 0;
}
} else {
if (!timespec_from_absolute(rel_timeout, abs_timeout)) {
return ETIMEDOUT;
}
// Failed to acquire, hang up.
// To avoid losing wake ups the pending_writers update and the state read should be
// sequentially consistent. (currently enforced by __sync_fetch_and_add which creates a full barrier)
__sync_fetch_and_add(&rwlock->pending_writers, 1); // C++11 memory_order_relaxed (if the futex_wait ensures the ordering)
int ret = __futex_wait_ex(&rwlock->state, rwlock_is_shared(rwlock), cur_state, rel_timeout);
__sync_fetch_and_sub(&rwlock->pending_writers, 1); // C++11 memory_order_relaxed
atomic_uint* pending_writers_ptr = PENDING_WRITERS_ATOMIC_POINTER(rwlock);
// To avoid losing wake ups, the pending_writers increment should be observed before
// futex_wait by all threads. A seq_cst fence instead of a seq_cst operation is used
// here. Because only a seq_cst fence can ensure sequential consistency for non-atomic
// operations in futex_wait.
atomic_fetch_add_explicit(pending_writers_ptr, 1, memory_order_relaxed);
atomic_thread_fence(memory_order_seq_cst);
int ret = __futex_wait_ex(state_ptr, rwlock_is_shared(rwlock), cur_state, rel_timeout);
atomic_fetch_sub_explicit(pending_writers_ptr, 1, memory_order_relaxed);
if (ret == -ETIMEDOUT) {
return ETIMEDOUT;
}
}
} while (!done);
rwlock->writer_thread_id = tid;
return 0;
}
}
int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock) {
@ -210,10 +253,14 @@ int pthread_rwlock_timedrdlock(pthread_rwlock_t* rwlock, const timespec* abs_tim
}
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock) {
int32_t cur_state = rwlock->state;
if ((cur_state >= 0) &&
__sync_bool_compare_and_swap(&rwlock->state, cur_state, cur_state + 1)) { // C++11 memory_order_acquire
return 0;
atomic_int* state_ptr = STATE_ATOMIC_POINTER(rwlock);
int cur_state = atomic_load_explicit(state_ptr, memory_order_relaxed);
while (cur_state >= 0) {
if (atomic_compare_exchange_weak_explicit(state_ptr, &cur_state, cur_state + 1,
memory_order_acquire, memory_order_relaxed)) {
return 0;
}
}
return EBUSY;
}
@ -227,12 +274,16 @@ int pthread_rwlock_timedwrlock(pthread_rwlock_t* rwlock, const timespec* abs_tim
}
int pthread_rwlock_trywrlock(pthread_rwlock_t* rwlock) {
int tid = __get_thread()->tid;
int32_t cur_state = rwlock->state;
if ((cur_state == 0) &&
__sync_bool_compare_and_swap(&rwlock->state, 0 /* cur state */, -1 /* new state */)) { // C++11 memory_order_acquire
rwlock->writer_thread_id = tid;
return 0;
atomic_int* state_ptr = STATE_ATOMIC_POINTER(rwlock);
int cur_state = atomic_load_explicit(state_ptr, memory_order_relaxed);
while (cur_state == 0) {
if (atomic_compare_exchange_weak_explicit(state_ptr, &cur_state, -1,
memory_order_acquire, memory_order_relaxed)) {
int tid = __get_thread()->tid;
atomic_store_explicit(WRITER_THREAD_ID_ATOMIC_POINTER(rwlock), tid, memory_order_relaxed);
return 0;
}
}
return EBUSY;
}
@ -240,42 +291,53 @@ int pthread_rwlock_trywrlock(pthread_rwlock_t* rwlock) {
int pthread_rwlock_unlock(pthread_rwlock_t* rwlock) {
int tid = __get_thread()->tid;
bool done = false;
do {
int32_t cur_state = rwlock->state;
if (cur_state == 0) {
atomic_int* state_ptr = STATE_ATOMIC_POINTER(rwlock);
atomic_uint* pending_readers_ptr = PENDING_READERS_ATOMIC_POINTER(rwlock);
atomic_uint* pending_writers_ptr = PENDING_WRITERS_ATOMIC_POINTER(rwlock);
int cur_state = atomic_load_explicit(state_ptr, memory_order_relaxed);
if (__predict_false(cur_state == 0)) {
return EPERM;
} else if (cur_state == -1) {
atomic_int* writer_thread_id_ptr = WRITER_THREAD_ID_ATOMIC_POINTER(rwlock);
if (atomic_load_explicit(writer_thread_id_ptr, memory_order_relaxed) != tid) {
return EPERM;
}
if (cur_state == -1) {
if (rwlock->writer_thread_id != tid) {
// We're no longer the owner.
atomic_store_explicit(writer_thread_id_ptr, 0, memory_order_relaxed);
// Change state from -1 to 0.
atomic_store_explicit(state_ptr, 0, memory_order_release);
goto wakeup_waiters;
} else { // cur_state > 0
// Reduce state by 1.
while (!atomic_compare_exchange_weak_explicit(state_ptr, &cur_state, cur_state - 1,
memory_order_release, memory_order_relaxed)) {
if (cur_state <= 0) {
return EPERM;
}
// We're no longer the owner.
rwlock->writer_thread_id = 0;
// Change state from -1 to 0.
// We use __sync_bool_compare_and_swap to achieve sequential consistency of the state store and
// the following pendingX loads. A simple store with memory_order_release semantics
// is not enough to guarantee that the pendingX loads are not reordered before the
// store (which may lead to a lost wakeup).
__sync_bool_compare_and_swap( &rwlock->state, -1 /* cur state*/, 0 /* new state */); // C++11 maybe memory_order_seq_cst?
// Wake any waiters.
if (__predict_false(rwlock->pending_readers > 0 || rwlock->pending_writers > 0)) {
__futex_wake_ex(&rwlock->state, rwlock_is_shared(rwlock), INT_MAX);
}
done = true;
} else { // cur_state > 0
// Reduce state by 1.
// See the comment above on why we need __sync_bool_compare_and_swap.
done = __sync_bool_compare_and_swap(&rwlock->state, cur_state, cur_state - 1); // C++11 maybe memory_order_seq_cst?
if (done && (cur_state - 1) == 0) {
// There are no more readers, wake any waiters.
if (__predict_false(rwlock->pending_readers > 0 || rwlock->pending_writers > 0)) {
__futex_wake_ex(&rwlock->state, rwlock_is_shared(rwlock), INT_MAX);
}
}
}
} while (!done);
if (cur_state == 1) {
goto wakeup_waiters;
}
}
return 0;
wakeup_waiters:
// To avoid losing wake ups, the update of state should be observed before reading
// pending_readers/pending_writers by all threads. Use read locking as an example:
// read locking thread unlocking thread
// pending_readers++; state = 0;
// seq_cst fence seq_cst fence
// read state for futex_wait read pending_readers for futex_wake
//
// So when locking and unlocking threads are running in parallel, we will not get
// in a situation that the locking thread reads state as negative and needs to wait,
// while the unlocking thread reads pending_readers as zero and doesn't need to wake up waiters.
atomic_thread_fence(memory_order_seq_cst);
if (__predict_false(atomic_load_explicit(pending_readers_ptr, memory_order_relaxed) > 0 ||
atomic_load_explicit(pending_writers_ptr, memory_order_relaxed) > 0)) {
__futex_wake_ex(state_ptr, rwlock_is_shared(rwlock), INT_MAX);
}
return 0;
}

View File

@ -91,10 +91,10 @@ typedef struct {
pthread_mutex_t __unused_lock;
pthread_cond_t __unused_cond;
#endif
volatile int32_t state; // 0=unlock, -1=writer lock, +n=reader lock
volatile int32_t writer_thread_id;
volatile int32_t pending_readers;
volatile int32_t pending_writers;
int32_t state; // 0=unlock, -1=writer lock, +n=reader lock
int32_t writer_thread_id;
uint32_t pending_readers;
uint32_t pending_writers;
int32_t attr;
#ifdef __LP64__
char __reserved[36];

View File

@ -33,6 +33,8 @@
#include <time.h>
#include <unistd.h>
#include <atomic>
TEST(pthread, pthread_key_create) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
@ -699,6 +701,79 @@ TEST(pthread, pthread_rwlock_smoke) {
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
}
struct RwlockWakeupHelperArg {
pthread_rwlock_t lock;
enum Progress {
LOCK_INITIALIZED,
LOCK_WAITING,
LOCK_RELEASED,
LOCK_ACCESSED
};
std::atomic<Progress> progress;
};
static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
}
TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, NULL,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
sleep(1);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_join(thread, NULL));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, NULL,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
sleep(1);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_join(thread, NULL));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
static int g_once_fn_call_count = 0;
static void OnceFn() {
++g_once_fn_call_count;