android_bionic/libm/i387/fenv.c

394 lines
9.3 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2004-2005 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/msun/i387/fenv.c,v 1.2 2005/03/17 22:21:46 das Exp $
*/
#include <sys/cdefs.h>
#include <sys/types.h>
#include "npx.h"
#include "fenv.h"
#define ROUND_MASK (FE_TONEAREST | FE_DOWNWARD | FE_UPWARD | FE_TOWARDZERO)
/*
* As compared to the x87 control word, the SSE unit's control word
* has the rounding control bits offset by 3 and the exception mask
* bits offset by 7.
*/
#define _SSE_ROUND_SHIFT 3
#define _SSE_EMASK_SHIFT 7
const fenv_t __fe_dfl_env = {
__INITIAL_NPXCW__, /*__control*/
0x0000, /*__mxcsr_hi*/
0x0000, /*__status*/
0x1f80, /*__mxcsr_lo*/
0xffffffff, /*__tag*/
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff } /*__other*/
};
#define __fldcw(__cw) __asm __volatile("fldcw %0" : : "m" (__cw))
#define __fldenv(__env) __asm __volatile("fldenv %0" : : "m" (__env))
#define __fldenvx(__env) __asm __volatile("fldenv %0" : : "m" (__env) \
: "st", "st(1)", "st(2)", "st(3)", "st(4)", \
"st(5)", "st(6)", "st(7)")
#define __fnclex() __asm __volatile("fnclex")
#define __fnstenv(__env) __asm __volatile("fnstenv %0" : "=m" (*(__env)))
#define __fnstcw(__cw) __asm __volatile("fnstcw %0" : "=m" (*(__cw)))
#define __fnstsw(__sw) __asm __volatile("fnstsw %0" : "=am" (*(__sw)))
#define __fwait() __asm __volatile("fwait")
#define __ldmxcsr(__csr) __asm __volatile("ldmxcsr %0" : : "m" (__csr))
#define __stmxcsr(__csr) __asm __volatile("stmxcsr %0" : "=m" (*(__csr)))
/* After testing for SSE support once, we cache the result in __has_sse. */
enum __sse_support { __SSE_YES, __SSE_NO, __SSE_UNK };
#ifdef __SSE__
#define __HAS_SSE() 1
#else
#define __HAS_SSE() (__has_sse == __SSE_YES || \
(__has_sse == __SSE_UNK && __test_sse()))
#endif
enum __sse_support __has_sse =
#ifdef __SSE__
__SSE_YES;
#else
__SSE_UNK;
#endif
#ifndef __SSE__
#define getfl(x) __asm __volatile("pushfl\n\tpopl %0" : "=mr" (*(x)))
#define setfl(x) __asm __volatile("pushl %0\n\tpopfl" : : "g" (x))
#define cpuid_dx(x) __asm __volatile("pushl %%ebx\n\tmovl $1, %%eax\n\t" \
"cpuid\n\tpopl %%ebx" \
: "=d" (*(x)) : : "eax", "ecx")
/*
* Test for SSE support on this processor. We need to do this because
* we need to use ldmxcsr/stmxcsr to get correct results if any part
* of the program was compiled to use SSE floating-point, but we can't
* use SSE on older processors.
*/
int
__test_sse(void)
{
int flag, nflag;
int dx_features;
/* Am I a 486? */
getfl(&flag);
nflag = flag ^ 0x200000;
setfl(nflag);
getfl(&nflag);
if (flag != nflag) {
/* Not a 486, so CPUID should work. */
cpuid_dx(&dx_features);
if (dx_features & 0x2000000) {
__has_sse = __SSE_YES;
return (1);
}
}
__has_sse = __SSE_NO;
return (0);
}
#endif /* __SSE__ */
int
fesetexceptflag(const fexcept_t *flagp, int excepts)
{
fenv_t env;
__uint32_t mxcsr;
excepts &= FE_ALL_EXCEPT;
if (excepts) { /* Do nothing if excepts is 0 */
__fnstenv(&env);
env.__status &= ~excepts;
env.__status |= *flagp & excepts;
__fnclex();
__fldenv(env);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
mxcsr &= ~excepts;
mxcsr |= *flagp & excepts;
__ldmxcsr(mxcsr);
}
}
return (0);
}
int
feraiseexcept(int excepts)
{
fexcept_t ex = excepts;
fesetexceptflag(&ex, excepts);
__fwait();
return (0);
}
int
fegetenv(fenv_t *envp)
{
__uint32_t mxcsr;
__fnstenv(envp);
/*
* fnstenv masks all exceptions, so we need to restore
* the old control word to avoid this side effect.
*/
__fldcw(envp->__control);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
envp->__mxcsr_hi = mxcsr >> 16;
envp->__mxcsr_lo = mxcsr & 0xffff;
}
return (0);
}
int
feholdexcept(fenv_t *envp)
{
__uint32_t mxcsr;
fenv_t env;
__fnstenv(&env);
*envp = env;
env.__status &= ~FE_ALL_EXCEPT;
env.__control |= FE_ALL_EXCEPT;
__fnclex();
__fldenv(env);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
envp->__mxcsr_hi = mxcsr >> 16;
envp->__mxcsr_lo = mxcsr & 0xffff;
mxcsr &= ~FE_ALL_EXCEPT;
mxcsr |= FE_ALL_EXCEPT << _SSE_EMASK_SHIFT;
__ldmxcsr(mxcsr);
}
return (0);
}
int
feupdateenv(const fenv_t *envp)
{
__uint32_t mxcsr;
__uint16_t status;
__fnstsw(&status);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
} else {
mxcsr = 0;
}
fesetenv(envp);
feraiseexcept((mxcsr | status) & FE_ALL_EXCEPT);
return (0);
}
int
feenableexcept(int mask)
{
__uint32_t mxcsr;
__uint16_t control, omask;
mask &= FE_ALL_EXCEPT;
__fnstcw(&control);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
} else {
mxcsr = 0;
}
omask = ~(control | mxcsr >> _SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
if (mask) {
control &= ~mask;
__fldcw(control);
if (__HAS_SSE()) {
mxcsr &= ~(mask << _SSE_EMASK_SHIFT);
__ldmxcsr(mxcsr);
}
}
return (omask);
}
int
fedisableexcept(int mask)
{
__uint32_t mxcsr;
__uint16_t control, omask;
mask &= FE_ALL_EXCEPT;
__fnstcw(&control);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
} else {
mxcsr = 0;
}
omask = ~(control | mxcsr >> _SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
if (mask) {
control |= mask;
__fldcw(control);
if (__HAS_SSE()) {
mxcsr |= mask << _SSE_EMASK_SHIFT;
__ldmxcsr(mxcsr);
}
}
return (omask);
}
int
feclearexcept(int excepts)
{
fenv_t env;
__uint32_t mxcsr;
excepts &= FE_ALL_EXCEPT;
if (excepts) { /* Do nothing if excepts is 0 */
__fnstenv(&env);
env.__status &= ~excepts;
__fnclex();
__fldenv(env);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
mxcsr &= ~excepts;
__ldmxcsr(mxcsr);
}
}
return (0);
}
int
fegetexceptflag(fexcept_t *flagp, int excepts)
{
__uint32_t mxcsr;
__uint16_t status;
excepts &= FE_ALL_EXCEPT;
__fnstsw(&status);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
} else {
mxcsr = 0;
}
*flagp = (status | mxcsr) & excepts;
return (0);
}
int
fetestexcept(int excepts)
{
__uint32_t mxcsr;
__uint16_t status;
excepts &= FE_ALL_EXCEPT;
if (excepts) { /* Do nothing if excepts is 0 */
__fnstsw(&status);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
} else {
mxcsr = 0;
}
return ((status | mxcsr) & excepts);
}
return (0);
}
int
fegetround(void)
{
__uint16_t control;
/*
* We assume that the x87 and the SSE unit agree on the
* rounding mode. Reading the control word on the x87 turns
* out to be about 5 times faster than reading it on the SSE
* unit on an Opteron 244.
*/
__fnstcw(&control);
return (control & ROUND_MASK);
}
int
fesetround(int round)
{
__uint32_t mxcsr;
__uint16_t control;
if (round & ~ROUND_MASK) {
return (-1);
} else {
__fnstcw(&control);
control &= ~ROUND_MASK;
control |= round;
__fldcw(control);
if (__HAS_SSE()) {
__stmxcsr(&mxcsr);
mxcsr &= ~(ROUND_MASK << _SSE_ROUND_SHIFT);
mxcsr |= round << _SSE_ROUND_SHIFT;
__ldmxcsr(mxcsr);
}
return (0);
}
}
int
fesetenv(const fenv_t *envp)
{
fenv_t env = *envp;
__uint32_t mxcsr;
mxcsr = (env.__mxcsr_hi << 16) | (env.__mxcsr_lo);
env.__mxcsr_hi = 0xffff;
env.__mxcsr_lo = 0xffff;
/*
* XXX Using fldenvx() instead of fldenv() tells the compiler that this
* instruction clobbers the i387 register stack. This happens because
* we restore the tag word from the saved environment. Normally, this
* would happen anyway and we wouldn't care, because the ABI allows
* function calls to clobber the i387 regs. However, fesetenv() is
* inlined, so we need to be more careful.
*/
__fldenvx(env);
if (__HAS_SSE()) {
__ldmxcsr(mxcsr);
}
return (0);
}
int
fegetexcept(void)
{
__uint16_t control;
/*
* We assume that the masks for the x87 and the SSE unit are
* the same.
*/
__fnstcw(&control);
return (~control & FE_ALL_EXCEPT);
}