Reorganize static TLS memory for ELF TLS
For ELF TLS "local-exec" accesses, the static linker assumes that an
executable's TLS segment is located at a statically-known offset from the
thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86).
Because these layouts are incompatible, Bionic generally needs to allocate
its TLS slots differently between different architectures.
To allow per-architecture TLS slots:
- Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are
generally negative, while new x86 slots are generally positive.
- Define a bionic_tcb struct that provides two things:
- a void* raw_slots_storage[BIONIC_TLS_SLOTS] field
- an inline accessor function: void*& tls_slot(size_t tpindex);
For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots),
because the runtime linker doesn't know how large the static TLS area is
until after it has loaded all of the initial solibs.
To accommodate Golang, it's necessary to allocate the pthread keys at a
fixed, small, positive offset from the thread pointer.
This CL moves the pthread keys into bionic_tls, then allocates a single
mapping per thread that looks like so:
- stack guard
- stack [omitted for main thread and with pthread_attr_setstack]
- static TLS:
- bionic_tcb [exec TLS will either precede or succeed the TCB]
- bionic_tls [prefixed by the pthread keys]
- [solib TLS segments will be placed here]
- guard page
As before, if the new mapping includes a stack, the pthread_internal_t
is allocated on it.
At startup, Bionic allocates a temporary bionic_tcb object on the stack,
then allocates a temporary bionic_tls object using mmap. This mmap is
delayed because the linker can't currently call async_safe_fatal() before
relocating itself.
Later, Bionic allocates a stack-less thread mapping for the main thread,
and copies slots from the temporary TCB to the new TCB.
(See *::copy_from_bootstrap methods.)
Bug: http://b/78026329
Test: bionic unit tests
Test: verify that a Golang app still works
Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped
Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3
Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3
(cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 10:51:30 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "linker_tls.h"
|
|
|
|
|
|
|
|
#include "private/bionic_defs.h"
|
|
|
|
#include "private/bionic_elf_tls.h"
|
|
|
|
#include "private/bionic_globals.h"
|
|
|
|
#include "private/linker_native_bridge.h"
|
|
|
|
|
|
|
|
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
|
|
|
|
extern "C" void __linker_reserve_bionic_tls_in_static_tls() {
|
|
|
|
__libc_shared_globals()->static_tls_layout.reserve_bionic_tls();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stub for linker static TLS layout.
|
|
|
|
void layout_linker_static_tls() {
|
|
|
|
StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
|
2019-01-15 05:52:14 +00:00
|
|
|
layout.reserve_exe_segment_and_tcb(nullptr);
|
Reorganize static TLS memory for ELF TLS
For ELF TLS "local-exec" accesses, the static linker assumes that an
executable's TLS segment is located at a statically-known offset from the
thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86).
Because these layouts are incompatible, Bionic generally needs to allocate
its TLS slots differently between different architectures.
To allow per-architecture TLS slots:
- Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are
generally negative, while new x86 slots are generally positive.
- Define a bionic_tcb struct that provides two things:
- a void* raw_slots_storage[BIONIC_TLS_SLOTS] field
- an inline accessor function: void*& tls_slot(size_t tpindex);
For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots),
because the runtime linker doesn't know how large the static TLS area is
until after it has loaded all of the initial solibs.
To accommodate Golang, it's necessary to allocate the pthread keys at a
fixed, small, positive offset from the thread pointer.
This CL moves the pthread keys into bionic_tls, then allocates a single
mapping per thread that looks like so:
- stack guard
- stack [omitted for main thread and with pthread_attr_setstack]
- static TLS:
- bionic_tcb [exec TLS will either precede or succeed the TCB]
- bionic_tls [prefixed by the pthread keys]
- [solib TLS segments will be placed here]
- guard page
As before, if the new mapping includes a stack, the pthread_internal_t
is allocated on it.
At startup, Bionic allocates a temporary bionic_tcb object on the stack,
then allocates a temporary bionic_tls object using mmap. This mmap is
delayed because the linker can't currently call async_safe_fatal() before
relocating itself.
Later, Bionic allocates a stack-less thread mapping for the main thread,
and copies slots from the temporary TCB to the new TCB.
(See *::copy_from_bootstrap methods.)
Bug: http://b/78026329
Test: bionic unit tests
Test: verify that a Golang app still works
Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped
Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3
Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3
(cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 10:51:30 +00:00
|
|
|
|
|
|
|
// The pthread key data is located at the very front of bionic_tls. As a
|
|
|
|
// temporary workaround, allocate bionic_tls just after the thread pointer so
|
|
|
|
// Golang can find its pthread key, as long as the executable's TLS segment is
|
|
|
|
// small enough. Specifically, Golang scans forward 384 words from the TP on
|
|
|
|
// ARM.
|
|
|
|
// - http://b/118381796
|
|
|
|
// - https://groups.google.com/d/msg/golang-dev/yVrkFnYrYPE/2G3aFzYqBgAJ
|
|
|
|
__linker_reserve_bionic_tls_in_static_tls();
|
|
|
|
|
|
|
|
layout.finish_layout();
|
|
|
|
}
|