android_bionic/tests/gtest_main.cpp

775 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
namespace testing {
namespace internal {
// Reuse of testing::internal::ColoredPrintf in gtest.
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
void ColoredPrintf(GTestColor color, const char* fmt, ...);
} // namespace internal
} // namespace testing
using testing::internal::GTestColor;
using testing::internal::COLOR_DEFAULT;
using testing::internal::COLOR_RED;
using testing::internal::COLOR_GREEN;
using testing::internal::COLOR_YELLOW;
using testing::internal::ColoredPrintf;
constexpr int DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS = 60000;
constexpr int DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS = 2000;
// The time each test can run before killed for the reason of timeout.
// It takes effect only with --isolate option.
static int global_test_run_deadline_in_ms = DEFAULT_GLOBAL_TEST_RUN_DEADLINE_IN_MS;
// The time each test can run before be warned for too much running time.
// It takes effect only with --isolate option.
static int global_test_run_warnline_in_ms = DEFAULT_GLOBAL_TEST_RUN_WARNLINE_IN_MS;
// Return deadline duration for a test, in ms.
static int GetDeadlineInfo(const std::string& /*test_name*/) {
return global_test_run_deadline_in_ms;
}
// Return warnline duration for a test, in ms.
static int GetWarnlineInfo(const std::string& /*test_name*/) {
return global_test_run_warnline_in_ms;
}
enum TestResult {
TEST_SUCCESS = 0,
TEST_FAILED,
TEST_TIMEOUT
};
class TestCase {
public:
TestCase() {} // For std::vector<TestCase>.
explicit TestCase(const char* name) : name_(name) {}
const std::string& GetName() const { return name_; }
void AppendTest(const std::string& test_name) {
test_list_.push_back(std::make_tuple(test_name, TEST_FAILED, 0LL));
}
int NumTests() const { return test_list_.size(); }
std::string GetTestName(int test_id) const {
VerifyTestId(test_id);
return name_ + "." + std::get<0>(test_list_[test_id]);
}
void SetTestResult(int test_id, TestResult result) {
VerifyTestId(test_id);
std::get<1>(test_list_[test_id]) = result;
}
TestResult GetTestResult(int test_id) const {
VerifyTestId(test_id);
return std::get<1>(test_list_[test_id]);
}
void SetTestTime(int test_id, int64_t elapsed_time) {
VerifyTestId(test_id);
std::get<2>(test_list_[test_id]) = elapsed_time;
}
int64_t GetTestTime(int test_id) const {
VerifyTestId(test_id);
return std::get<2>(test_list_[test_id]);
}
private:
void VerifyTestId(int test_id) const {
if(test_id < 0 || test_id >= static_cast<int>(test_list_.size())) {
fprintf(stderr, "test_id %d out of range [0, %zu)\n", test_id, test_list_.size());
exit(1);
}
}
private:
const std::string name_;
std::vector<std::tuple<std::string, TestResult, int64_t> > test_list_;
};
// TestResultPrinter is copied from part of external/gtest/src/gtest.cc:PrettyUnitTestResultPrinter.
// The reason for copy is that PrettyUnitTestResultPrinter is defined and used in gtest.cc, which
// is hard to reuse.
// TestResultPrinter only print information for a single test, which is used in child process.
// The information of test_iteration/environment/testcase is left for parent process to print.
class TestResultPrinter : public testing::EmptyTestEventListener {
public:
TestResultPrinter() : pinfo_(NULL) {}
virtual void OnTestStart(const testing::TestInfo& test_info) {
pinfo_ = &test_info; // Record test_info for use in OnTestPartResult.
}
virtual void OnTestPartResult(const testing::TestPartResult& result);
virtual void OnTestEnd(const testing::TestInfo& test_info);
private:
const testing::TestInfo* pinfo_;
};
// Called after an assertion failure.
void TestResultPrinter::OnTestPartResult(const testing::TestPartResult& result) {
// If the test part succeeded, we don't need to do anything.
if (result.type() == testing::TestPartResult::kSuccess)
return;
// Print failure message from the assertion (e.g. expected this and got that).
char buf[1024];
snprintf(buf, sizeof(buf), "%s:(%d) Failure in test %s.%s\n%s\n", result.file_name(),
result.line_number(),
pinfo_->test_case_name(),
pinfo_->name(),
result.message());
// Use write() to skip line buffer of printf, thus can avoid getting interleaved when
// several processes are printing at the same time.
int towrite = strlen(buf);
char* p = buf;
while (towrite > 0) {
ssize_t num_write = write(fileno(stdout), p, towrite);
if (num_write == -1) {
if (errno != EINTR) {
fprintf(stderr, "write, errno = %d\n", errno);
break;
}
} else {
towrite -= num_write;
p += num_write;
}
}
}
void TestResultPrinter::OnTestEnd(const testing::TestInfo& test_info) {
if (test_info.result()->Passed()) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
}
printf("%s.%s", test_info.test_case_name(), test_info.name());
if (test_info.result()->Failed()) {
const char* const type_param = test_info.type_param();
const char* const value_param = test_info.value_param();
if (type_param != NULL || value_param != NULL) {
printf(", where ");
if (type_param != NULL) {
printf("TypeParam = %s", type_param);
if (value_param != NULL) {
printf(" and ");
}
}
if (value_param != NULL) {
printf("GetParam() = %s", value_param);
}
}
}
if (testing::GTEST_FLAG(print_time)) {
printf(" (%lld ms)\n", test_info.result()->elapsed_time());
} else {
printf("\n");
}
fflush(stdout);
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
static bool EnumerateTests(int argc, char** argv, std::vector<TestCase>& testcase_list) {
std::string command;
for (int i = 0; i < argc; ++i) {
command += argv[i];
command += " ";
}
command += "--gtest_list_tests";
FILE* fp = popen(command.c_str(), "r");
if (fp == NULL) {
perror("popen");
return false;
}
char buf[200];
while (fgets(buf, sizeof(buf), fp) != NULL) {
char* p = buf;
while (*p != '\0' && isspace(*p)) {
++p;
}
if (*p == '\0') continue;
char* start = p;
while (*p != '\0' && !isspace(*p)) {
++p;
}
char* end = p;
while (*p != '\0' && isspace(*p)) {
++p;
}
if (*p != '\0') {
// This is not we want, gtest must meet with some error when parsing the arguments.
fprintf(stderr, "argument error, check with --help\n");
return false;
}
*end = '\0';
if (*(end - 1) == '.') {
*(end - 1) = '\0';
testcase_list.push_back(TestCase(start));
} else {
testcase_list.back().AppendTest(start);
}
}
int result = pclose(fp);
return (result != -1 && WEXITSTATUS(result) == 0);
}
static void PrintHelpInfo() {
printf("Bionic Unit Test Options:\n"
" --isolate\n"
" Use isolation mode, Run each test in a separate process.\n"
" --deadline=[TIME_IN_MS]\n"
" Run each test in no longer than [TIME_IN_MS] time.\n"
" It takes effect only in isolation mode. Deafult deadline is 60000 ms.\n"
" --warnline=[TIME_IN_MS]\n"
" Test running longer than [TIME_IN_MS] will be warned.\n"
" It takes effect only in isolation mode. Default warnline is 2000 ms.\n"
" -j [JOB_NUM]\n"
" Run up to JOB_NUM tests in parallel.\n"
" Use isolation mode, Run each test in a separate process.\n"
" If JOB_NUM is not given, it is set to the number of cpus available.\n"
"\n");
}
// Part of the following *Print functions are copied from external/gtest/src/gtest.cc:
// PrettyUnitTestResultPrinter. The reason for copy is that PrettyUnitTestResultPrinter
// is defined and used in gtest.cc, which is hard to reuse.
static void OnTestIterationStartPrint(const std::vector<TestCase>& testcase_list, int iteration,
int num_iterations) {
if (num_iterations > 1) {
printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration);
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
int num_testcases = testcase_list.size();
int num_tests = 0;
for (const auto& testcase : testcase_list) {
num_tests += testcase.NumTests();
}
printf("Running %d %s from %d %s.\n",
num_tests, (num_tests == 1) ? "test" : "tests",
num_testcases, (num_testcases == 1) ? "test case" : "test cases");
fflush(stdout);
}
static void OnTestTimeoutPrint(const TestCase& testcase, int test_id) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (killed by timeout at %lld ms)\n", testcase.GetTestName(test_id).c_str(),
testcase.GetTestTime(test_id) / 1000000LL);
fflush(stdout);
}
static void TestcaseTimePrint(const TestCase& testcase) {
int64_t testcase_time = 0;
for (int i = 0; i < testcase.NumTests(); ++i) {
testcase_time += testcase.GetTestTime(i);
}
printf("%d %s from %s (%lld ms total)\n", testcase.NumTests(),
(testcase.NumTests() == 1) ? "test" : "tests",
testcase.GetName().c_str(),
testcase_time / 1000000LL);
fflush(stdout);
}
static void OnTestIterationEndPrint(const std::vector<TestCase>& testcase_list, int /*iteration*/,
int64_t elapsed_time) {
std::vector<std::string> fail_test_name_list;
std::vector<std::pair<std::string, int64_t>> timeout_test_list;
// For tests run exceed warnline but not timeout.
std::vector<std::tuple<std::string, int64_t, int>> timewarn_test_list;
int num_testcases = testcase_list.size();
int num_tests = 0;
int num_success_tests = 0;
for (const auto& testcase : testcase_list) {
num_tests += testcase.NumTests();
for (int i = 0; i < testcase.NumTests(); ++i) {
TestResult result = testcase.GetTestResult(i);
if (result == TEST_SUCCESS) {
++num_success_tests;
} else if (result == TEST_FAILED) {
fail_test_name_list.push_back(testcase.GetTestName(i));
} else if (result == TEST_TIMEOUT) {
timeout_test_list.push_back(std::make_pair(testcase.GetTestName(i),
testcase.GetTestTime(i)));
}
if (result != TEST_TIMEOUT &&
testcase.GetTestTime(i) / 1000000 >= GetWarnlineInfo(testcase.GetTestName(i))) {
timewarn_test_list.push_back(std::make_tuple(testcase.GetTestName(i),
testcase.GetTestTime(i),
GetWarnlineInfo(testcase.GetTestName(i))));
}
}
}
for (auto const& testcase : testcase_list) {
TestcaseTimePrint(testcase);
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("%d %s from %d %s ran.", num_tests, (num_tests == 1) ? "test" : "tests",
num_testcases, (num_testcases == 1) ? "test case" : "test cases");
if (testing::GTEST_FLAG(print_time)) {
printf(" (%lld ms total)", elapsed_time / 1000000LL);
}
printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASSED ] ");
printf("%d %s.\n", num_success_tests, (num_success_tests == 1) ? "test" : "tests");
// Print tests failed.
int num_fail_tests = fail_test_name_list.size();
if (num_fail_tests > 0) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%d %s, listed below:\n", num_fail_tests, (num_fail_tests == 1) ? "test" : "tests");
for (const auto& name : fail_test_name_list) {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s\n", name.c_str());
}
}
// Print tests run timeout.
int num_timeout_tests = timeout_test_list.size();
if (num_timeout_tests > 0) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%d %s, listed below:\n", num_timeout_tests, (num_timeout_tests == 1) ? "test" : "tests");
for (const auto& timeout_pair : timeout_test_list) {
ColoredPrintf(COLOR_RED, "[ TIMEOUT ] ");
printf("%s (stopped at %lld ms)\n", timeout_pair.first.c_str(),
timeout_pair.second / 1000000LL);
}
}
// Print tests run exceed warnline.
int num_timewarn_tests = timewarn_test_list.size();
if (num_timewarn_tests > 0) {
ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] ");
printf("%d %s, listed below:\n", num_timewarn_tests, (num_timewarn_tests == 1) ? "test" : "tests");
for (const auto& timewarn_tuple : timewarn_test_list) {
ColoredPrintf(COLOR_YELLOW, "[ TIMEWARN ] ");
printf("%s (%lld ms, exceed warnline %d ms)\n", std::get<0>(timewarn_tuple).c_str(),
std::get<1>(timewarn_tuple) / 1000000LL,
std::get<2>(timewarn_tuple));
}
}
if (num_fail_tests > 0) {
printf("\n%2d FAILED %s\n", num_fail_tests, (num_fail_tests == 1) ? "TEST" : "TESTS");
}
if (num_timeout_tests > 0) {
printf("%2d TIMEOUT %s\n", num_timeout_tests, (num_timeout_tests == 1) ? "TEST" : "TESTS");
}
if (num_timewarn_tests > 0) {
printf("%2d TIMEWARN %s\n", num_timewarn_tests, (num_timewarn_tests == 1) ? "TEST" : "TESTS");
}
fflush(stdout);
}
// Forked Child process, run the single test.
static void ChildProcessFn(int argc, char** argv, const std::string& test_name) {
char** new_argv = new char*[argc + 1];
memcpy(new_argv, argv, sizeof(char*) * argc);
char* filter_arg = new char [test_name.size() + 20];
strcpy(filter_arg, "--gtest_filter=");
strcat(filter_arg, test_name.c_str());
new_argv[argc] = filter_arg;
int new_argc = argc + 1;
testing::InitGoogleTest(&new_argc, new_argv);
int result = RUN_ALL_TESTS();
exit(result);
}
struct ChildProcInfo {
pid_t pid;
int64_t start_time;
int64_t deadline_time;
int testcase_id, test_id;
bool done_flag;
TestResult test_result;
ChildProcInfo() : pid(0) {}
};
static void WaitChildProcs(std::vector<ChildProcInfo>& child_proc_list) {
pid_t result;
int exit_status;
bool loop_flag = true;
while (true) {
while ((result = waitpid(-1, &exit_status, WNOHANG)) == -1) {
if (errno != EINTR) {
break;
}
}
if (result == -1) {
perror("waitpid");
exit(1);
} else if (result == 0) {
// Check child timeout.
int64_t current_time = NanoTime();
for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].deadline_time <= current_time) {
child_proc_list[i].done_flag = true;
child_proc_list[i].test_result = TEST_TIMEOUT;
loop_flag = false;
}
}
} else {
// Check child finish.
for (size_t i = 0; i < child_proc_list.size(); ++i) {
if (child_proc_list[i].pid == result) {
child_proc_list[i].done_flag = true;
child_proc_list[i].test_result = (WEXITSTATUS(exit_status) == 0) ? TEST_SUCCESS :
TEST_FAILED;
loop_flag = false;
break;
}
}
}
if (!loop_flag) break;
// sleep 1 ms to avoid busy looping.
timespec sleep_time;
sleep_time.tv_sec = 0;
sleep_time.tv_nsec = 1000000;
nanosleep(&sleep_time, NULL);
}
}
static TestResult WaitChildProc(pid_t pid) {
pid_t result;
int exit_status;
while ((result = waitpid(pid, &exit_status, 0)) == -1) {
if (errno != EINTR) {
break;
}
}
TestResult test_result = TEST_SUCCESS;
if (result != pid || WEXITSTATUS(exit_status) != 0) {
test_result = TEST_FAILED;
}
return test_result;
}
// We choose to use multi-fork and multi-wait here instead of multi-thread, because it always
// makes deadlock to use fork in multi-thread.
static void RunTestInSeparateProc(int argc, char** argv, std::vector<TestCase>& testcase_list,
int num_iterations, int num_jobs) {
// Stop default result printer to avoid environment setup/teardown information for each test.
testing::UnitTest::GetInstance()->listeners().Release(
testing::UnitTest::GetInstance()->listeners().default_result_printer());
testing::UnitTest::GetInstance()->listeners().Append(new TestResultPrinter);
for (int iteration = 1; iteration <= num_iterations; ++iteration) {
OnTestIterationStartPrint(testcase_list, iteration, num_iterations);
int64_t iteration_start_time = NanoTime();
std::vector<ChildProcInfo> child_proc_list(num_jobs);
int assign_testcase = 0, assign_test = 0;
std::vector<int> finish_test_num_list(testcase_list.size(), 0);
int num_finish_testcases = 0;
while (num_finish_testcases < static_cast<int>(testcase_list.size())) {
// Fork child process up to num_jobs.
for (auto& child_proc : child_proc_list) {
if (child_proc.pid == 0 && assign_testcase < static_cast<int>(testcase_list.size())) {
std::string test_name = testcase_list[assign_testcase].GetTestName(assign_test);
pid_t pid = fork();
if (pid == -1) {
perror("fork in RunTestInSeparateProc");
exit(1);
} else if (pid == 0) {
// Run child process test, never return.
ChildProcessFn(argc, argv, test_name);
}
// Parent process
child_proc.pid = pid;
child_proc.start_time = NanoTime();
child_proc.deadline_time = child_proc.start_time + GetDeadlineInfo(test_name) * 1000000LL;
child_proc.testcase_id = assign_testcase;
child_proc.test_id = assign_test;
child_proc.done_flag = false;
if (++assign_test == testcase_list[assign_testcase].NumTests()) {
assign_test = 0;
++assign_testcase;
}
}
}
// Wait for any child proc finish or timeout.
WaitChildProcs(child_proc_list);
// Collect result.
for (auto& child_proc : child_proc_list) {
if (child_proc.pid != 0 && child_proc.done_flag == true) {
int testcase_id = child_proc.testcase_id;
int test_id = child_proc.test_id;
TestResult test_result = child_proc.test_result;
if (test_result == TEST_TIMEOUT) {
// Kill and wait the child process.
kill(child_proc.pid, SIGKILL);
WaitChildProc(child_proc.pid);
}
TestCase& testcase = testcase_list[testcase_id];
testcase.SetTestResult(test_id, test_result);
testcase.SetTestTime(test_id, NanoTime() - child_proc.start_time);
if (test_result == TEST_TIMEOUT) {
OnTestTimeoutPrint(testcase, test_id);
}
if (++finish_test_num_list[testcase_id] == testcase.NumTests()) {
++num_finish_testcases;
}
child_proc.pid = 0;
child_proc.done_flag = false;
}
}
}
OnTestIterationEndPrint(testcase_list, iteration, NanoTime() - iteration_start_time);
}
}
static int GetCpuNumber() {
FILE* fp = popen("cat /proc/cpuinfo | grep processor | wc -l", "r");
int result = 1; // Return 1 if we can't get the exact cpu number.
if (fp != NULL) {
fscanf(fp, "%d", &result);
if (result < 1) {
result = 1;
}
pclose(fp);
}
return result;
}
// Pick options not for gtest; Return false if run error.
// Use exit_flag to indicate whether we need to run gtest flow after PickOptions.
static bool PickOptions(int* pargc, char*** pargv, bool* exit_flag) {
int argc = *pargc;
char** argv = *pargv;
*exit_flag = false;
for (int i = 0; i < argc; ++i) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
PrintHelpInfo();
return true;
}
}
// Move --gtest_filter option to last, and add "-bionic_gtest*" to disable self test.
int gtest_filter_option_pos = 0;
for (int i = argc - 1; i >= 1; --i) {
if (strncmp(argv[i], "--gtest_filter=", sizeof("--gtest_filter=") - 1) == 0) {
gtest_filter_option_pos = i;
break;
}
}
if (gtest_filter_option_pos != 0) {
char* gtest_filter_arg = argv[gtest_filter_option_pos];
for (int i = gtest_filter_option_pos; i < argc - 1; ++i) {
argv[i] = argv[i + 1];
}
char* new_arg = new char[strlen(gtest_filter_arg) + sizeof(":-bionic_gtest*")];
strcpy(new_arg, gtest_filter_arg);
strcat(new_arg, ":-bionic_gtest*");
argv[argc - 1] = new_arg;
} else {
char** new_argv = new char* [argc + 1];
for (int i = 0; i < argc; ++i) {
new_argv[i] = argv[i];
}
new_argv[argc++] = const_cast<char*>("--gtest_filter=-bionic_gtest*");
*pargv = argv = new_argv;
}
// Parse bionic_gtest specific options.
bool isolate_option = false;
int job_num_option = 1;
int deadline_option_len = sizeof("--deadline=") - 1;
int warnline_option_len = sizeof("--warnline=") - 1;
int gtest_color_option_len = sizeof("--gtest_color=") - 1;
for (int i = 1; i < argc; ++i) {
int remove_arg_num = 0;
// If running in isolation mode, main process doesn't call testing::InitGoogleTest(&argc, argv).
// So we should parse gtest options for printing here.
if (strncmp(argv[i], "--gtest_color=", gtest_color_option_len) == 0) {
testing::GTEST_FLAG(color) = argv[i] + gtest_color_option_len;
} else if (strcmp(argv[i], "--gtest_print_time=0") == 0) {
testing::GTEST_FLAG(print_time) = false;
} else if (strcmp(argv[i], "--isolate") == 0) {
isolate_option = true;
remove_arg_num = 1;
} else if (strncmp(argv[i], "--deadline=", deadline_option_len) == 0) {
global_test_run_deadline_in_ms = atoi(argv[i] + deadline_option_len);
if (global_test_run_deadline_in_ms <= 0) {
fprintf(stderr, "value for --deadline option should be positive: %s\n",
argv[i] + deadline_option_len);
exit(1);
}
remove_arg_num = 1;
} else if (strncmp(argv[i], "--warnline=", warnline_option_len) == 0) {
global_test_run_warnline_in_ms = atoi(argv[i] + warnline_option_len);
if (global_test_run_warnline_in_ms <= 0) {
fprintf(stderr, "value for --warnline option should be positive: %s\n",
argv[i] + warnline_option_len);
exit(1);
}
remove_arg_num = 1;
} else if (strcmp(argv[i], "--bionic_gtest") == 0) {
// Enable "bionic_gtest*" for self test.
// Don't remove this option from argument list.
argv[argc - 1] = const_cast<char*>("--gtest_filter=bionic_gtest*");
} else if (strcmp(argv[i], "-j") == 0) {
isolate_option = true; // Enable isolation mode when -j is used.
if (i + 1 < argc && (job_num_option = atoi(argv[i + 1])) > 0) {
remove_arg_num = 2;
} else {
job_num_option = GetCpuNumber();
remove_arg_num = 1;
}
}
if (remove_arg_num != 0) {
for (int j = i; j < argc - remove_arg_num; ++j) {
argv[j] = argv[j + remove_arg_num];
}
argc -= remove_arg_num;
--i;
}
}
// Handle --gtest_repeat=[COUNT] option if we are in isolation mode.
// We should check and remove this option to avoid child process running single test for several
// iterations.
int gtest_repeat_num = 1;
if (isolate_option == true) {
int len = sizeof("--gtest_repeat=") - 1;
for (int i = 1; i < argc; ++i) {
if (strncmp(argv[i], "--gtest_repeat=", len) == 0) {
gtest_repeat_num = atoi(argv[i] + len);
if (gtest_repeat_num < 0) {
fprintf(stderr, "error count for option --gtest_repeat=[COUNT]\n");
return false;
}
for (int j = i; j < argc - 1; ++j) {
argv[j] = argv[j + 1];
}
--argc;
break;
}
}
}
*pargc = argc;
// Run tests in isolation mode.
if (isolate_option) {
*exit_flag = true;
std::vector<TestCase> testcase_list;
if (EnumerateTests(argc, argv, testcase_list) == false) {
return false;
}
RunTestInSeparateProc(argc, argv, testcase_list, gtest_repeat_num, job_num_option);
return true;
}
return true;
}
int main(int argc, char** argv) {
bool exit_flag;
int return_result = 0;
if (PickOptions(&argc, &argv, &exit_flag) == false) {
return_result = 1;
} else if (!exit_flag) {
testing::InitGoogleTest(&argc, argv);
return_result = RUN_ALL_TESTS();
}
return return_result;
}
//################################################################################
// Bionic Gtest self test, run this by --bionic_gtest --isolate option.
TEST(bionic_gtest, test_success) {
ASSERT_EQ(1, 1);
}
TEST(bionic_gtest, test_fail) {
ASSERT_EQ(0, 1);
}
TEST(bionic_gtest, test_time_warn) {
sleep(4);
}
TEST(bionic_gtest, test_timeout) {
while (1) {}
}