/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include // bionic kernel uapi linux/udp.h header is munged... #define __kernel_udphdr udphdr #include #ifdef BTF // BTF is incompatible with bpfloaders < v0.10, hence for S (v0.2) we must // ship a different file than for later versions, but we need bpfloader v0.25+ // for obj@ver.o support #define BPFLOADER_MIN_VER BPFLOADER_OBJ_AT_VER_VERSION #else /* BTF */ // The resulting .o needs to load on the Android S bpfloader #define BPFLOADER_MIN_VER BPFLOADER_S_VERSION #define BPFLOADER_MAX_VER BPFLOADER_OBJ_AT_VER_VERSION #endif /* BTF */ // Warning: values other than AID_ROOT don't work for map uid on BpfLoader < v0.21 #define TETHERING_UID AID_ROOT #ifdef INPROCESS #define DEFAULT_BPF_MAP_SELINUX_CONTEXT "fs_bpf_net_shared" #define DEFAULT_BPF_PROG_SELINUX_CONTEXT "fs_bpf_net_shared" #define TETHERING_GID AID_SYSTEM #else #define TETHERING_GID AID_NETWORK_STACK #endif #include "bpf_helpers.h" #include "bpf_net_helpers.h" #include "bpf_tethering.h" // From kernel:include/net/ip.h #define IP_DF 0x4000 // Flag: "Don't Fragment" // ----- Helper functions for offsets to fields ----- // They all assume simple IP packets: // - no VLAN ethernet tags // - no IPv4 options (see IPV4_HLEN/TCP4_OFFSET/UDP4_OFFSET) // - no IPv6 extension headers // - no TCP options (see TCP_HLEN) //#define ETH_HLEN sizeof(struct ethhdr) #define IP4_HLEN sizeof(struct iphdr) #define IP6_HLEN sizeof(struct ipv6hdr) #define TCP_HLEN sizeof(struct tcphdr) #define UDP_HLEN sizeof(struct udphdr) // Offsets from beginning of L4 (TCP/UDP) header #define TCP_OFFSET(field) offsetof(struct tcphdr, field) #define UDP_OFFSET(field) offsetof(struct udphdr, field) // Offsets from beginning of L3 (IPv4) header #define IP4_OFFSET(field) offsetof(struct iphdr, field) #define IP4_TCP_OFFSET(field) (IP4_HLEN + TCP_OFFSET(field)) #define IP4_UDP_OFFSET(field) (IP4_HLEN + UDP_OFFSET(field)) // Offsets from beginning of L3 (IPv6) header #define IP6_OFFSET(field) offsetof(struct ipv6hdr, field) #define IP6_TCP_OFFSET(field) (IP6_HLEN + TCP_OFFSET(field)) #define IP6_UDP_OFFSET(field) (IP6_HLEN + UDP_OFFSET(field)) // Offsets from beginning of L2 (ie. Ethernet) header (which must be present) #define ETH_IP4_OFFSET(field) (ETH_HLEN + IP4_OFFSET(field)) #define ETH_IP4_TCP_OFFSET(field) (ETH_HLEN + IP4_TCP_OFFSET(field)) #define ETH_IP4_UDP_OFFSET(field) (ETH_HLEN + IP4_UDP_OFFSET(field)) #define ETH_IP6_OFFSET(field) (ETH_HLEN + IP6_OFFSET(field)) #define ETH_IP6_TCP_OFFSET(field) (ETH_HLEN + IP6_TCP_OFFSET(field)) #define ETH_IP6_UDP_OFFSET(field) (ETH_HLEN + IP6_UDP_OFFSET(field)) // ----- Tethering Error Counters ----- DEFINE_BPF_MAP_GRW(tether_error_map, ARRAY, uint32_t, uint32_t, BPF_TETHER_ERR__MAX, TETHERING_GID) #define COUNT_AND_RETURN(counter, ret) do { \ uint32_t code = BPF_TETHER_ERR_ ## counter; \ uint32_t *count = bpf_tether_error_map_lookup_elem(&code); \ if (count) __sync_fetch_and_add(count, 1); \ return ret; \ } while(0) #define TC_DROP(counter) COUNT_AND_RETURN(counter, TC_ACT_SHOT) #define TC_PUNT(counter) COUNT_AND_RETURN(counter, TC_ACT_PIPE) #define XDP_DROP(counter) COUNT_AND_RETURN(counter, XDP_DROP) #define XDP_PUNT(counter) COUNT_AND_RETURN(counter, XDP_PASS) // ----- Tethering Data Stats and Limits ----- // Tethering stats, indexed by upstream interface. DEFINE_BPF_MAP_GRW(tether_stats_map, HASH, TetherStatsKey, TetherStatsValue, 16, TETHERING_GID) // Tethering data limit, indexed by upstream interface. // (tethering allowed when stats[iif].rxBytes + stats[iif].txBytes < limit[iif]) DEFINE_BPF_MAP_GRW(tether_limit_map, HASH, TetherLimitKey, TetherLimitValue, 16, TETHERING_GID) // ----- IPv6 Support ----- DEFINE_BPF_MAP_GRW(tether_downstream6_map, HASH, TetherDownstream6Key, Tether6Value, 64, TETHERING_GID) DEFINE_BPF_MAP_GRW(tether_downstream64_map, HASH, TetherDownstream64Key, TetherDownstream64Value, 1024, TETHERING_GID) DEFINE_BPF_MAP_GRW(tether_upstream6_map, HASH, TetherUpstream6Key, Tether6Value, 64, TETHERING_GID) static inline __always_inline int do_forward6(struct __sk_buff* skb, const bool is_ethernet, const bool downstream) { // Must be meta-ethernet IPv6 frame if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_PIPE; // Require ethernet dst mac address to be our unicast address. if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE; const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does // not trigger and thus we need to manually make sure we can read packet headers via DPA. // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter. // It has to be done early cause it will invalidate any skb->data/data_end derived pointers. try_make_writable(skb, l2_header_size + IP6_HLEN + TCP_HLEN); void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet struct ipv6hdr* ip6 = is_ethernet ? (void*)(eth + 1) : data; // Must have (ethernet and) ipv6 header if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_PIPE; // Ethertype - if present - must be IPv6 if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_PIPE; // IP version must be 6 if (ip6->version != 6) TC_PUNT(INVALID_IP_VERSION); // Cannot decrement during forward if already zero or would be zero, // Let the kernel's stack handle these cases and generate appropriate ICMP errors. if (ip6->hop_limit <= 1) TC_PUNT(LOW_TTL); // If hardware offload is running and programming flows based on conntrack entries, // try not to interfere with it. if (ip6->nexthdr == IPPROTO_TCP) { struct tcphdr* tcph = (void*)(ip6 + 1); // Make sure we can get at the tcp header if (data + l2_header_size + sizeof(*ip6) + sizeof(*tcph) > data_end) TC_PUNT(INVALID_TCP_HEADER); // Do not offload TCP packets with any one of the SYN/FIN/RST flags if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCP_CONTROL_PACKET); } // Protect against forwarding packets sourced from ::1 or fe80::/64 or other weirdness. __be32 src32 = ip6->saddr.s6_addr32[0]; if (src32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP (src32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast TC_PUNT(NON_GLOBAL_SRC); // Protect against forwarding packets destined to ::1 or fe80::/64 or other weirdness. __be32 dst32 = ip6->daddr.s6_addr32[0]; if (dst32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP (dst32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast TC_PUNT(NON_GLOBAL_DST); // In the upstream direction do not forward traffic within the same /64 subnet. if (!downstream && (src32 == dst32) && (ip6->saddr.s6_addr32[1] == ip6->daddr.s6_addr32[1])) TC_PUNT(LOCAL_SRC_DST); TetherDownstream6Key kd = { .iif = skb->ifindex, .neigh6 = ip6->daddr, }; TetherUpstream6Key ku = { .iif = skb->ifindex, }; if (is_ethernet) __builtin_memcpy(downstream ? kd.dstMac : ku.dstMac, eth->h_dest, ETH_ALEN); Tether6Value* v = downstream ? bpf_tether_downstream6_map_lookup_elem(&kd) : bpf_tether_upstream6_map_lookup_elem(&ku); // If we don't find any offload information then simply let the core stack handle it... if (!v) return TC_ACT_PIPE; uint32_t stat_and_limit_k = downstream ? skb->ifindex : v->oif; TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k); // If we don't have anywhere to put stats, then abort... if (!stat_v) TC_PUNT(NO_STATS_ENTRY); uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k); // If we don't have a limit, then abort... if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY); // Required IPv6 minimum mtu is 1280, below that not clear what we should do, abort... if (v->pmtu < IPV6_MIN_MTU) TC_PUNT(BELOW_IPV6_MTU); // Approximate handling of TCP/IPv6 overhead for incoming LRO/GRO packets: default // outbound path mtu of 1500 is not necessarily correct, but worst case we simply // undercount, which is still better then not accounting for this overhead at all. // Note: this really shouldn't be device/path mtu at all, but rather should be // derived from this particular connection's mss (ie. from gro segment size). // This would require a much newer kernel with newer ebpf accessors. // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header) uint64_t packets = 1; uint64_t bytes = skb->len; if (bytes > v->pmtu) { const int tcp_overhead = sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + 12; const int mss = v->pmtu - tcp_overhead; const uint64_t payload = bytes - tcp_overhead; packets = (payload + mss - 1) / mss; bytes = tcp_overhead * packets + payload; } // Are we past the limit? If so, then abort... // Note: will not overflow since u64 is 936 years even at 5Gbps. // Do not drop here. Offload is just that, whenever we fail to handle // a packet we let the core stack deal with things. // (The core stack needs to handle limits correctly anyway, // since we don't offload all traffic in both directions) if (stat_v->rxBytes + stat_v->txBytes + bytes > *limit_v) TC_PUNT(LIMIT_REACHED); if (!is_ethernet) { // Try to inject an ethernet header, and simply return if we fail. // We do this even if TX interface is RAWIP and thus does not need an ethernet header, // because this is easier and the kernel will strip extraneous ethernet header. if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) { __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1); TC_PUNT(CHANGE_HEAD_FAILED); } // bpf_skb_change_head() invalidates all pointers - reload them data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; eth = data; ip6 = (void*)(eth + 1); // I do not believe this can ever happen, but keep the verifier happy... if (data + sizeof(struct ethhdr) + sizeof(*ip6) > data_end) { __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1); TC_DROP(TOO_SHORT); } }; // At this point we always have an ethernet header - which will get stripped by the // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid. // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct. // CHECKSUM_COMPLETE is a 16-bit one's complement sum, // thus corrections for it need to be done in 16-byte chunks at even offsets. // IPv6 nexthdr is at offset 6, while hop limit is at offset 7 uint8_t old_hl = ip6->hop_limit; --ip6->hop_limit; uint8_t new_hl = ip6->hop_limit; // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. bpf_csum_update(skb, 0xFFFF - ntohs(old_hl) + ntohs(new_hl)); __sync_fetch_and_add(downstream ? &stat_v->rxPackets : &stat_v->txPackets, packets); __sync_fetch_and_add(downstream ? &stat_v->rxBytes : &stat_v->txBytes, bytes); // Overwrite any mac header with the new one // For a rawip tx interface it will simply be a bunch of zeroes and later stripped. *eth = v->macHeader; // Redirect to forwarded interface. // // Note that bpf_redirect() cannot fail unless you pass invalid flags. // The redirect actually happens after the ebpf program has already terminated, // and can fail for example for mtu reasons at that point in time, but there's nothing // we can do about it here. return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); } DEFINE_BPF_PROG("schedcls/tether_downstream6_ether", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream6_ether) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ true, /* downstream */ true); } DEFINE_BPF_PROG("schedcls/tether_upstream6_ether", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream6_ether) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ true, /* downstream */ false); } // Note: section names must be unique to prevent programs from appending to each other, // so instead the bpf loader will strip everything past the final $ symbol when actually // pinning the program into the filesystem. // // bpf_skb_change_head() is only present on 4.14+ and 2 trivial kernel patches are needed: // ANDROID: net: bpf: Allow TC programs to call BPF_FUNC_skb_change_head // ANDROID: net: bpf: permit redirect from ingress L3 to egress L2 devices at near max mtu // (the first of those has already been upstreamed) // // 5.4 kernel support was only added to Android Common Kernel in R, // and thus a 5.4 kernel always supports this. // // Hence, these mandatory (must load successfully) implementations for 5.4+ kernels: DEFINE_BPF_PROG_KVER("schedcls/tether_downstream6_rawip$5_4", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream6_rawip_5_4, KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ false, /* downstream */ true); } DEFINE_BPF_PROG_KVER("schedcls/tether_upstream6_rawip$5_4", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream6_rawip_5_4, KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ false, /* downstream */ false); } // and these identical optional (may fail to load) implementations for [4.14..5.4) patched kernels: DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream6_rawip$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream6_rawip_4_14, KVER(4, 14, 0), KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ false, /* downstream */ true); } DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream6_rawip$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream6_rawip_4_14, KVER(4, 14, 0), KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward6(skb, /* is_ethernet */ false, /* downstream */ false); } // and define no-op stubs for [4.9,4.14) and unpatched [4.14,5.4) kernels. // (if the above real 4.14+ program loaded successfully, then bpfloader will have already pinned // it at the same location this one would be pinned at and will thus skip loading this stub) DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream6_rawip$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream6_rawip_stub, KVER_NONE, KVER(5, 4, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream6_rawip$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream6_rawip_stub, KVER_NONE, KVER(5, 4, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } // ----- IPv4 Support ----- DEFINE_BPF_MAP_GRW(tether_downstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID) DEFINE_BPF_MAP_GRW(tether_upstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID) static inline __always_inline int do_forward4_bottom(struct __sk_buff* skb, const int l2_header_size, void* data, const void* data_end, struct ethhdr* eth, struct iphdr* ip, const bool is_ethernet, const bool downstream, const bool updatetime, const bool is_tcp) { struct tcphdr* tcph = is_tcp ? (void*)(ip + 1) : NULL; struct udphdr* udph = is_tcp ? NULL : (void*)(ip + 1); if (is_tcp) { // Make sure we can get at the tcp header if (data + l2_header_size + sizeof(*ip) + sizeof(*tcph) > data_end) TC_PUNT(SHORT_TCP_HEADER); // If hardware offload is running and programming flows based on conntrack entries, try not // to interfere with it, so do not offload TCP packets with any one of the SYN/FIN/RST flags if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCP_CONTROL_PACKET); } else { // UDP // Make sure we can get at the udp header if (data + l2_header_size + sizeof(*ip) + sizeof(*udph) > data_end) TC_PUNT(SHORT_UDP_HEADER); // Skip handling of CHECKSUM_COMPLETE packets with udp checksum zero due to need for // additional updating of skb->csum (this could be fixed up manually with more effort). // // Note that the in-kernel implementation of 'int64_t bpf_csum_update(skb, u32 csum)' is: // if (skb->ip_summed == CHECKSUM_COMPLETE) // return (skb->csum = csum_add(skb->csum, csum)); // else // return -ENOTSUPP; // // So this will punt any CHECKSUM_COMPLETE packet with a zero UDP checksum, // and leave all other packets unaffected (since it just at most adds zero to skb->csum). // // In practice this should almost never trigger because most nics do not generate // CHECKSUM_COMPLETE packets on receive - especially so for nics/drivers on a phone. // // Additionally since we're forwarding, in most cases the value of the skb->csum field // shouldn't matter (it's not used by physical nic egress). // // It only matters if we're ingressing through a CHECKSUM_COMPLETE capable nic // and egressing through a virtual interface looping back to the kernel itself // (ie. something like veth) where the CHECKSUM_COMPLETE/skb->csum can get reused // on ingress. // // If we were in the kernel we'd simply probably call // void skb_checksum_complete_unset(struct sk_buff *skb) { // if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; // } // here instead. Perhaps there should be a bpf helper for that? if (!udph->check && (bpf_csum_update(skb, 0) >= 0)) TC_PUNT(UDP_CSUM_ZERO); } Tether4Key k = { .iif = skb->ifindex, .l4Proto = ip->protocol, .src4.s_addr = ip->saddr, .dst4.s_addr = ip->daddr, .srcPort = is_tcp ? tcph->source : udph->source, .dstPort = is_tcp ? tcph->dest : udph->dest, }; if (is_ethernet) __builtin_memcpy(k.dstMac, eth->h_dest, ETH_ALEN); Tether4Value* v = downstream ? bpf_tether_downstream4_map_lookup_elem(&k) : bpf_tether_upstream4_map_lookup_elem(&k); // If we don't find any offload information then simply let the core stack handle it... if (!v) return TC_ACT_PIPE; uint32_t stat_and_limit_k = downstream ? skb->ifindex : v->oif; TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k); // If we don't have anywhere to put stats, then abort... if (!stat_v) TC_PUNT(NO_STATS_ENTRY); uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k); // If we don't have a limit, then abort... if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY); // Required IPv4 minimum mtu is 68, below that not clear what we should do, abort... if (v->pmtu < 68) TC_PUNT(BELOW_IPV4_MTU); // Approximate handling of TCP/IPv4 overhead for incoming LRO/GRO packets: default // outbound path mtu of 1500 is not necessarily correct, but worst case we simply // undercount, which is still better then not accounting for this overhead at all. // Note: this really shouldn't be device/path mtu at all, but rather should be // derived from this particular connection's mss (ie. from gro segment size). // This would require a much newer kernel with newer ebpf accessors. // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header) uint64_t packets = 1; uint64_t bytes = skb->len; if (bytes > v->pmtu) { const int tcp_overhead = sizeof(struct iphdr) + sizeof(struct tcphdr) + 12; const int mss = v->pmtu - tcp_overhead; const uint64_t payload = bytes - tcp_overhead; packets = (payload + mss - 1) / mss; bytes = tcp_overhead * packets + payload; } // Are we past the limit? If so, then abort... // Note: will not overflow since u64 is 936 years even at 5Gbps. // Do not drop here. Offload is just that, whenever we fail to handle // a packet we let the core stack deal with things. // (The core stack needs to handle limits correctly anyway, // since we don't offload all traffic in both directions) if (stat_v->rxBytes + stat_v->txBytes + bytes > *limit_v) TC_PUNT(LIMIT_REACHED); if (!is_ethernet) { // Try to inject an ethernet header, and simply return if we fail. // We do this even if TX interface is RAWIP and thus does not need an ethernet header, // because this is easier and the kernel will strip extraneous ethernet header. if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) { __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1); TC_PUNT(CHANGE_HEAD_FAILED); } // bpf_skb_change_head() invalidates all pointers - reload them data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; eth = data; ip = (void*)(eth + 1); tcph = is_tcp ? (void*)(ip + 1) : NULL; udph = is_tcp ? NULL : (void*)(ip + 1); // I do not believe this can ever happen, but keep the verifier happy... if (data + sizeof(struct ethhdr) + sizeof(*ip) + (is_tcp ? sizeof(*tcph) : sizeof(*udph)) > data_end) { __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1); TC_DROP(TOO_SHORT); } }; // At this point we always have an ethernet header - which will get stripped by the // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid. // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct. // Overwrite any mac header with the new one // For a rawip tx interface it will simply be a bunch of zeroes and later stripped. *eth = v->macHeader; // Decrement the IPv4 TTL, we already know it's greater than 1. // u8 TTL field is followed by u8 protocol to make a u16 for ipv4 header checksum update. // Since we're keeping the ipv4 checksum valid (which means the checksum of the entire // ipv4 header remains 0), the overall checksum of the entire packet does not change. const int sz2 = sizeof(__be16); const __be16 old_ttl_proto = *(__be16 *)&ip->ttl; const __be16 new_ttl_proto = old_ttl_proto - htons(0x0100); bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_ttl_proto, new_ttl_proto, sz2); bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(ttl), &new_ttl_proto, sz2, 0); const int l4_offs_csum = is_tcp ? ETH_IP4_TCP_OFFSET(check) : ETH_IP4_UDP_OFFSET(check); const int sz4 = sizeof(__be32); // UDP 0 is special and stored as FFFF (this flag also causes a csum of 0 to be unmodified) const int l4_flags = is_tcp ? 0 : BPF_F_MARK_MANGLED_0; const __be32 old_daddr = k.dst4.s_addr; const __be32 old_saddr = k.src4.s_addr; const __be32 new_daddr = v->dst46.s6_addr32[3]; const __be32 new_saddr = v->src46.s6_addr32[3]; bpf_l4_csum_replace(skb, l4_offs_csum, old_daddr, new_daddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags); bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_daddr, new_daddr, sz4); bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(daddr), &new_daddr, sz4, 0); bpf_l4_csum_replace(skb, l4_offs_csum, old_saddr, new_saddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags); bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_saddr, new_saddr, sz4); bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(saddr), &new_saddr, sz4, 0); // The offsets for TCP and UDP ports: source (u16 @ L4 offset 0) & dest (u16 @ L4 offset 2) are // actually the same, so the compiler should just optimize them both down to a constant. bpf_l4_csum_replace(skb, l4_offs_csum, k.srcPort, v->srcPort, sz2 | l4_flags); bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(source) : ETH_IP4_UDP_OFFSET(source), &v->srcPort, sz2, 0); bpf_l4_csum_replace(skb, l4_offs_csum, k.dstPort, v->dstPort, sz2 | l4_flags); bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(dest) : ETH_IP4_UDP_OFFSET(dest), &v->dstPort, sz2, 0); // This requires the bpf_ktime_get_boot_ns() helper which was added in 5.8, // and backported to all Android Common Kernel 4.14+ trees. if (updatetime) v->last_used = bpf_ktime_get_boot_ns(); __sync_fetch_and_add(downstream ? &stat_v->rxPackets : &stat_v->txPackets, packets); __sync_fetch_and_add(downstream ? &stat_v->rxBytes : &stat_v->txBytes, bytes); // Redirect to forwarded interface. // // Note that bpf_redirect() cannot fail unless you pass invalid flags. // The redirect actually happens after the ebpf program has already terminated, // and can fail for example for mtu reasons at that point in time, but there's nothing // we can do about it here. return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); } static inline __always_inline int do_forward4(struct __sk_buff* skb, const bool is_ethernet, const bool downstream, const bool updatetime) { // Require ethernet dst mac address to be our unicast address. if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE; // Must be meta-ethernet IPv4 frame if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_PIPE; const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does // not trigger and thus we need to manually make sure we can read packet headers via DPA. // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter. // It has to be done early cause it will invalidate any skb->data/data_end derived pointers. try_make_writable(skb, l2_header_size + IP4_HLEN + TCP_HLEN); void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet struct iphdr* ip = is_ethernet ? (void*)(eth + 1) : data; // Must have (ethernet and) ipv4 header if (data + l2_header_size + sizeof(*ip) > data_end) return TC_ACT_PIPE; // Ethertype - if present - must be IPv4 if (is_ethernet && (eth->h_proto != htons(ETH_P_IP))) return TC_ACT_PIPE; // IP version must be 4 if (ip->version != 4) TC_PUNT(INVALID_IP_VERSION); // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header if (ip->ihl != 5) TC_PUNT(HAS_IP_OPTIONS); // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(*ip) / sizeof(__u16); ++i) { sum4 += ((__u16*)ip)[i]; } // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF if (sum4 != 0xFFFF) TC_PUNT(CHECKSUM); // Minimum IPv4 total length is the size of the header if (ntohs(ip->tot_len) < sizeof(*ip)) TC_PUNT(TRUNCATED_IPV4); // We are incapable of dealing with IPv4 fragments if (ip->frag_off & ~htons(IP_DF)) TC_PUNT(IS_IP_FRAG); // Cannot decrement during forward if already zero or would be zero, // Let the kernel's stack handle these cases and generate appropriate ICMP errors. if (ip->ttl <= 1) TC_PUNT(LOW_TTL); // If we cannot update the 'last_used' field due to lack of bpf_ktime_get_boot_ns() helper, // then it is not safe to offload UDP due to the small conntrack timeouts, as such, // in such a situation we can only support TCP. This also has the added nice benefit of // using a separate error counter, and thus making it obvious which version of the program // is loaded. if (!updatetime && ip->protocol != IPPROTO_TCP) TC_PUNT(NON_TCP); // We do not support offloading anything besides IPv4 TCP and UDP, due to need for NAT, // but no need to check this if !updatetime due to check immediately above. if (updatetime && (ip->protocol != IPPROTO_TCP) && (ip->protocol != IPPROTO_UDP)) TC_PUNT(NON_TCP_UDP); // We want to make sure that the compiler will, in the !updatetime case, entirely optimize // out all the non-tcp logic. Also note that at this point is_udp === !is_tcp. const bool is_tcp = !updatetime || (ip->protocol == IPPROTO_TCP); // This is a bit of a hack to make things easier on the bpf verifier. // (In particular I believe the Linux 4.14 kernel's verifier can get confused later on about // what offsets into the packet are valid and can spuriously reject the program, this is // because it fails to realize that is_tcp && !is_tcp is impossible) // // For both TCP & UDP we'll need to read and modify the src/dst ports, which so happen to // always be in the first 4 bytes of the L4 header. Additionally for UDP we'll need access // to the checksum field which is in bytes 7 and 8. While for TCP we'll need to read the // TCP flags (at offset 13) and access to the checksum field (2 bytes at offset 16). // As such we *always* need access to at least 8 bytes. if (data + l2_header_size + sizeof(*ip) + 8 > data_end) TC_PUNT(SHORT_L4_HEADER); // We're forcing the compiler to emit two copies of the following code, optimized // separately for is_tcp being true or false. This simplifies the resulting bpf // byte code sufficiently that the 4.14 bpf verifier is able to keep track of things. // Without this (updatetime == true) case would fail to bpf verify on 4.14 even // if the underlying requisite kernel support (bpf_ktime_get_boot_ns) was backported. if (is_tcp) { return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip, is_ethernet, downstream, updatetime, /* is_tcp */ true); } else { return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip, is_ethernet, downstream, updatetime, /* is_tcp */ false); } } // Full featured (required) implementations for 5.8+ kernels (these are S+ by definition) DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_rawip$5_8", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_rawip_5_8, KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ true, /* updatetime */ true); } DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_rawip$5_8", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_rawip_5_8, KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ false, /* updatetime */ true); } DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_ether$5_8", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_ether_5_8, KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ true, /* updatetime */ true); } DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_ether$5_8", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_ether_5_8, KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ false, /* updatetime */ true); } // Full featured (optional) implementations for 4.14-S, 4.19-S & 5.4-S kernels // (optional, because we need to be able to fallback for 4.14/4.19/5.4 pre-S kernels) DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$opt", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_rawip_opt, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ true, /* updatetime */ true); } DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$opt", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_rawip_opt, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ false, /* updatetime */ true); } DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$opt", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_ether_opt, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ true, /* updatetime */ true); } DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$opt", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_ether_opt, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ false, /* updatetime */ true); } // Partial (TCP-only: will not update 'last_used' field) implementations for 4.14+ kernels. // These will be loaded only if the above optional ones failed (loading of *these* must succeed // for 5.4+, since that is always an R patched kernel). // // [Note: as a result TCP connections will not have their conntrack timeout refreshed, however, // since /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_established defaults to 432000 (seconds), // this in practice means they'll break only after 5 days. This seems an acceptable trade-off. // // Additionally kernel/tests change "net-test: add bpf_ktime_get_ns / bpf_ktime_get_boot_ns tests" // which enforces and documents the required kernel cherrypicks will make it pretty unlikely that // many devices upgrading to S will end up relying on these fallback programs. // RAWIP: Required for 5.4-R kernels -- which always support bpf_skb_change_head(). DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$5_4", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_rawip_5_4, KVER(5, 4, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ true, /* updatetime */ false); } DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$5_4", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_rawip_5_4, KVER(5, 4, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ false, /* updatetime */ false); } // RAWIP: Optional for 4.14/4.19 (R) kernels -- which support bpf_skb_change_head(). // [Note: fallback for 4.14/4.19 (P/Q) kernels is below in stub section] DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_rawip_4_14, KVER(4, 14, 0), KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ true, /* updatetime */ false); } DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_rawip_4_14, KVER(4, 14, 0), KVER(5, 4, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ false, /* downstream */ false, /* updatetime */ false); } // ETHER: Required for 4.14-Q/R, 4.19-Q/R & 5.4-R kernels. DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_ether_4_14, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ true, /* updatetime */ false); } DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$4_14", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_ether_4_14, KVER(4, 14, 0), KVER(5, 8, 0)) (struct __sk_buff* skb) { return do_forward4(skb, /* is_ethernet */ true, /* downstream */ false, /* updatetime */ false); } // Placeholder (no-op) implementations for older Q kernels // RAWIP: 4.9-P/Q, 4.14-P/Q & 4.19-Q kernels -- without bpf_skb_change_head() for tc programs DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_rawip_stub, KVER_NONE, KVER(5, 4, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_rawip_stub, KVER_NONE, KVER(5, 4, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } // ETHER: 4.9-P/Q kernel DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_downstream4_ether_stub, KVER_NONE, KVER(4, 14, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$stub", TETHERING_UID, TETHERING_GID, sched_cls_tether_upstream4_ether_stub, KVER_NONE, KVER(4, 14, 0)) (struct __sk_buff* skb) { return TC_ACT_PIPE; } // ----- XDP Support ----- DEFINE_BPF_MAP_GRW(tether_dev_map, DEVMAP_HASH, uint32_t, uint32_t, 64, TETHERING_GID) static inline __always_inline int do_xdp_forward6(struct xdp_md *ctx, const bool is_ethernet, const bool downstream) { return XDP_PASS; } static inline __always_inline int do_xdp_forward4(struct xdp_md *ctx, const bool is_ethernet, const bool downstream) { return XDP_PASS; } static inline __always_inline int do_xdp_forward_ether(struct xdp_md *ctx, const bool downstream) { const void* data = (void*)(long)ctx->data; const void* data_end = (void*)(long)ctx->data_end; const struct ethhdr* eth = data; // Make sure we actually have an ethernet header if ((void*)(eth + 1) > data_end) return XDP_PASS; if (eth->h_proto == htons(ETH_P_IPV6)) return do_xdp_forward6(ctx, /* is_ethernet */ true, downstream); if (eth->h_proto == htons(ETH_P_IP)) return do_xdp_forward4(ctx, /* is_ethernet */ true, downstream); // Anything else we don't know how to handle... return XDP_PASS; } static inline __always_inline int do_xdp_forward_rawip(struct xdp_md *ctx, const bool downstream) { const void* data = (void*)(long)ctx->data; const void* data_end = (void*)(long)ctx->data_end; // The top nibble of both IPv4 and IPv6 headers is the IP version. if (data_end - data < 1) return XDP_PASS; const uint8_t v = (*(uint8_t*)data) >> 4; if (v == 6) return do_xdp_forward6(ctx, /* is_ethernet */ false, downstream); if (v == 4) return do_xdp_forward4(ctx, /* is_ethernet */ false, downstream); // Anything else we don't know how to handle... return XDP_PASS; } #define DEFINE_XDP_PROG(str, func) \ DEFINE_BPF_PROG_KVER(str, TETHERING_UID, TETHERING_GID, func, KVER(5, 9, 0))(struct xdp_md *ctx) DEFINE_XDP_PROG("xdp/tether_downstream_ether", xdp_tether_downstream_ether) { return do_xdp_forward_ether(ctx, /* downstream */ true); } DEFINE_XDP_PROG("xdp/tether_downstream_rawip", xdp_tether_downstream_rawip) { return do_xdp_forward_rawip(ctx, /* downstream */ true); } DEFINE_XDP_PROG("xdp/tether_upstream_ether", xdp_tether_upstream_ether) { return do_xdp_forward_ether(ctx, /* downstream */ false); } DEFINE_XDP_PROG("xdp/tether_upstream_rawip", xdp_tether_upstream_rawip) { return do_xdp_forward_rawip(ctx, /* downstream */ false); } LICENSE("Apache 2.0"); CRITICAL("tethering");