/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include // bionic kernel uapi linux/udp.h header is munged... #define __kernel_udphdr udphdr #include // The resulting .o needs to load on the Android T beta 3 bpfloader #define BPFLOADER_MIN_VER BPFLOADER_T_BETA3_VERSION #include "bpf_helpers.h" #include "bpf_net_helpers.h" #include "clatd.h" #include "clat_mark.h" // IP flags. (from kernel's include/net/ip.h) #define IP_CE 0x8000 // Flag: "Congestion" (really reserved 'evil bit') #define IP_DF 0x4000 // Flag: "Don't Fragment" #define IP_MF 0x2000 // Flag: "More Fragments" #define IP_OFFSET 0x1FFF // "Fragment Offset" part // from kernel's include/net/ipv6.h struct frag_hdr { __u8 nexthdr; __u8 reserved; // always zero __be16 frag_off; // 13 bit offset, 2 bits zero, 1 bit "More Fragments" __be32 identification; }; DEFINE_BPF_MAP_GRW(clat_ingress6_map, HASH, ClatIngress6Key, ClatIngress6Value, 16, AID_SYSTEM) static inline __always_inline int nat64(struct __sk_buff* skb, const bool is_ethernet, const unsigned kver) { // Require ethernet dst mac address to be our unicast address. if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE; // Must be meta-ethernet IPv6 frame if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_PIPE; const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; // Not clear if this is actually necessary considering we use DPA (Direct Packet Access), // but we need to make sure we can read the IPv6 header reliably so that we can set // skb->mark = 0xDeadC1a7 for packets we fail to offload. try_make_writable(skb, l2_header_size + sizeof(struct ipv6hdr)); void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; const struct ethhdr* const eth = is_ethernet ? data : NULL; // used iff is_ethernet const struct ipv6hdr* const ip6 = is_ethernet ? (void*)(eth + 1) : data; // Must have (ethernet and) ipv6 header if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_PIPE; // Ethertype - if present - must be IPv6 if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_PIPE; // IP version must be 6 if (ip6->version != 6) return TC_ACT_PIPE; // Maximum IPv6 payload length that can be translated to IPv4 // Note: technically this check is too strict for an IPv6 fragment, // which by virtue of stripping the extra 8 byte fragment extension header, // could thus be 8 bytes larger and still fit in an ipv4 packet post // translation. However... who ever heard of receiving ~64KB frags... // fragments are kind of by definition smaller than ingress device mtu, // and thus, on the internet, very very unlikely to exceed 1500 bytes. if (ntohs(ip6->payload_len) > 0xFFFF - sizeof(struct iphdr)) return TC_ACT_PIPE; ClatIngress6Key k = { .iif = skb->ifindex, .pfx96.in6_u.u6_addr32 = { ip6->saddr.in6_u.u6_addr32[0], ip6->saddr.in6_u.u6_addr32[1], ip6->saddr.in6_u.u6_addr32[2], }, .local6 = ip6->daddr, }; ClatIngress6Value* v = bpf_clat_ingress6_map_lookup_elem(&k); if (!v) return TC_ACT_PIPE; __u8 proto = ip6->nexthdr; __be16 ip_id = 0; __be16 frag_off = htons(IP_DF); __u16 tot_len = ntohs(ip6->payload_len) + sizeof(struct iphdr); // cannot overflow, see above if (proto == IPPROTO_FRAGMENT) { // Fragment handling requires bpf_skb_adjust_room which is 4.14+ if (kver < KVER_4_14) return TC_ACT_PIPE; // Must have (ethernet and) ipv6 header and ipv6 fragment extension header if (data + l2_header_size + sizeof(*ip6) + sizeof(struct frag_hdr) > data_end) return TC_ACT_PIPE; const struct frag_hdr *frag = (const struct frag_hdr *)(ip6 + 1); proto = frag->nexthdr; // RFC6145: use bottom 16-bits of network endian 32-bit IPv6 ID field for 16-bit IPv4 field. // this is equivalent to: ip_id = htons(ntohl(frag->identification)); ip_id = frag->identification >> 16; // Conversion of 16-bit IPv6 frag offset to 16-bit IPv4 frag offset field. // IPv6 is '13 bits of offset in multiples of 8' + 2 zero bits + more fragment bit // IPv4 is zero bit + don't frag bit + more frag bit + '13 bits of offset in multiples of 8' frag_off = ntohs(frag->frag_off); frag_off = ((frag_off & 1) << 13) | (frag_off >> 3); frag_off = htons(frag_off); // Note that by construction tot_len is guaranteed to not underflow here tot_len -= sizeof(struct frag_hdr); // This is a badly formed IPv6 packet with less payload than the size of an IPv6 Frag EH if (tot_len < sizeof(struct iphdr)) return TC_ACT_PIPE; } switch (proto) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_UDP: // address means there is no need to update their checksums. case IPPROTO_GRE: // We do not need to bother looking at GRE/ESP headers, case IPPROTO_ESP: // since there is never a checksum to update. break; default: // do not know how to handle anything else // Mark ingress non-offloaded clat packet for dropping in ip6tables bw_raw_PREROUTING. // Non-offloaded clat packet is going to be handled by clat daemon and ip6tables. The // duplicate one in ip6tables is not necessary. skb->mark = CLAT_MARK; return TC_ACT_PIPE; } struct ethhdr eth2; // used iff is_ethernet if (is_ethernet) { eth2 = *eth; // Copy over the ethernet header (src/dst mac) eth2.h_proto = htons(ETH_P_IP); // But replace the ethertype } struct iphdr ip = { .version = 4, // u4 .ihl = sizeof(struct iphdr) / sizeof(__u32), // u4 .tos = (ip6->priority << 4) + (ip6->flow_lbl[0] >> 4), // u8 .tot_len = htons(tot_len), // be16 .id = ip_id, // be16 .frag_off = frag_off, // be16 .ttl = ip6->hop_limit, // u8 .protocol = proto, // u8 .check = 0, // u16 .saddr = ip6->saddr.in6_u.u6_addr32[3], // be32 .daddr = v->local4.s_addr, // be32 }; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(ip) / sizeof(__u16); ++i) { sum4 += ((__u16*)&ip)[i]; } // Note that sum4 is guaranteed to be non-zero by virtue of ip.version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 ip.check = (__u16)~sum4; // sum4 cannot be zero, so this is never 0xFFFF // Calculate the *negative* IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6->version == 6 (which has '0' bits) for (int i = 0; i < sizeof(*ip6) / sizeof(__u16); ++i) { sum6 += ~((__u16*)ip6)[i]; // note the bitwise negation } // Note that there is no L4 checksum update: we are relying on the checksum neutrality // of the ipv6 address chosen by netd's ClatdController. // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, htons(ETH_P_IP), 0)) { // Mark ingress non-offloaded clat packet for dropping in ip6tables bw_raw_PREROUTING. // Non-offloaded clat packet is going to be handled by clat daemon and ip6tables. The // duplicate one in ip6tables is not necessary. skb->mark = CLAT_MARK; return TC_ACT_PIPE; } // This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet. // // In such a case, skb->csum is a 16-bit one's complement sum of the entire payload, // thus we need to subtract out the ipv6 header's sum, and add in the ipv4 header's sum. // However, by construction of ip.check above the checksum of an ipv4 header is zero. // Thus we only need to subtract the ipv6 header's sum, which is the same as adding // in the sum of the bitwise negation of the ipv6 header. // // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. So we just ignore the return code. // // if (skb->ip_summed == CHECKSUM_COMPLETE) // return (skb->csum = csum_add(skb->csum, csum)); // else // return -ENOTSUPP; bpf_csum_update(skb, sum6); // Technically 'kver < KVER_4_14' already implies 'frag_off == htons(IP_DF)' due to logic above, // thus the initial 'kver >= KVER_4_14' check here is entirely superfluous. // // However, we *need* the compiler (when compiling the program for 4.9) to entirely // optimize out the call to bpf_skb_adjust_room() bpf helper: it's not enough for it to emit // an unreachable call to it, it must *not* emit it at all (otherwise the 4.9 kernel's // bpf verifier will refuse to load a program with an unknown bpf helper call) // // This is easiest to achieve by being very explicit in the if clause, // better safe than sorry... // // Note: we currently have no TreeHugger coverage for 4.9-T devices (there are no such // Pixel or cuttlefish devices), so likely you won't notice for months if this breaks... if (kver >= KVER_4_14 && frag_off != htons(IP_DF)) { // If we're converting an IPv6 Fragment, we need to trim off 8 more bytes // We're beyond recovery on error here... but hard to imagine how this could fail. if (bpf_skb_adjust_room(skb, -(__s32)sizeof(struct frag_hdr), BPF_ADJ_ROOM_NET, /*flags*/0)) return TC_ACT_SHOT; } // bpf_skb_change_proto() invalidates all pointers - reload them. data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; // I cannot think of any valid way for this error condition to trigger, however I do // believe the explicit check is required to keep the in kernel ebpf verifier happy. if (data + l2_header_size + sizeof(struct iphdr) > data_end) return TC_ACT_SHOT; if (is_ethernet) { struct ethhdr* new_eth = data; // Copy over the updated ethernet header *new_eth = eth2; // Copy over the new ipv4 header. *(struct iphdr*)(new_eth + 1) = ip; } else { // Copy over the new ipv4 header without an ethernet header. *(struct iphdr*)data = ip; } // Redirect, possibly back to same interface, so tcpdump sees packet twice. if (v->oif) return bpf_redirect(v->oif, BPF_F_INGRESS); // Just let it through, tcpdump will not see IPv4 packet. return TC_ACT_PIPE; } DEFINE_BPF_PROG_KVER("schedcls/ingress6/clat_ether$4_14", AID_ROOT, AID_SYSTEM, sched_cls_ingress6_clat_ether_4_14, KVER_4_14) (struct __sk_buff* skb) { return nat64(skb, ETHER, KVER_4_14); } DEFINE_BPF_PROG_KVER_RANGE("schedcls/ingress6/clat_ether$4_9", AID_ROOT, AID_SYSTEM, sched_cls_ingress6_clat_ether_4_9, KVER_NONE, KVER_4_14) (struct __sk_buff* skb) { return nat64(skb, ETHER, KVER_NONE); } DEFINE_BPF_PROG_KVER("schedcls/ingress6/clat_rawip$4_14", AID_ROOT, AID_SYSTEM, sched_cls_ingress6_clat_rawip_4_14, KVER_4_14) (struct __sk_buff* skb) { return nat64(skb, RAWIP, KVER_4_14); } DEFINE_BPF_PROG_KVER_RANGE("schedcls/ingress6/clat_rawip$4_9", AID_ROOT, AID_SYSTEM, sched_cls_ingress6_clat_rawip_4_9, KVER_NONE, KVER_4_14) (struct __sk_buff* skb) { return nat64(skb, RAWIP, KVER_NONE); } DEFINE_BPF_MAP_GRW(clat_egress4_map, HASH, ClatEgress4Key, ClatEgress4Value, 16, AID_SYSTEM) DEFINE_BPF_PROG("schedcls/egress4/clat_rawip", AID_ROOT, AID_SYSTEM, sched_cls_egress4_clat_rawip) (struct __sk_buff* skb) { // Must be meta-ethernet IPv4 frame if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_PIPE; // Possibly not needed, but for consistency with nat64 up above try_make_writable(skb, sizeof(struct iphdr)); void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; const struct iphdr* const ip4 = data; // Must have ipv4 header if (data + sizeof(*ip4) > data_end) return TC_ACT_PIPE; // IP version must be 4 if (ip4->version != 4) return TC_ACT_PIPE; // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header if (ip4->ihl != 5) return TC_ACT_PIPE; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(*ip4) / sizeof(__u16); ++i) { sum4 += ((__u16*)ip4)[i]; } // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF if (sum4 != 0xFFFF) return TC_ACT_PIPE; // Minimum IPv4 total length is the size of the header if (ntohs(ip4->tot_len) < sizeof(*ip4)) return TC_ACT_PIPE; // We are incapable of dealing with IPv4 fragments if (ip4->frag_off & ~htons(IP_DF)) return TC_ACT_PIPE; switch (ip4->protocol) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_GRE: // address means there is no need to update their checksums. case IPPROTO_ESP: // We do not need to bother looking at GRE/ESP headers, break; // since there is never a checksum to update. case IPPROTO_UDP: // See above comment, but must also have UDP header... if (data + sizeof(*ip4) + sizeof(struct udphdr) > data_end) return TC_ACT_PIPE; const struct udphdr* uh = (const struct udphdr*)(ip4 + 1); // If IPv4/UDP checksum is 0 then fallback to clatd so it can calculate the // checksum. Otherwise the network or more likely the NAT64 gateway might // drop the packet because in most cases IPv6/UDP packets with a zero checksum // are invalid. See RFC 6935. TODO: calculate checksum via bpf_csum_diff() if (!uh->check) return TC_ACT_PIPE; break; default: // do not know how to handle anything else return TC_ACT_PIPE; } ClatEgress4Key k = { .iif = skb->ifindex, .local4.s_addr = ip4->saddr, }; ClatEgress4Value* v = bpf_clat_egress4_map_lookup_elem(&k); if (!v) return TC_ACT_PIPE; // Translating without redirecting doesn't make sense. if (!v->oif) return TC_ACT_PIPE; // This implementation is currently limited to rawip. if (v->oifIsEthernet) return TC_ACT_PIPE; struct ipv6hdr ip6 = { .version = 6, // __u8:4 .priority = ip4->tos >> 4, // __u8:4 .flow_lbl = {(ip4->tos & 0xF) << 4, 0, 0}, // __u8[3] .payload_len = htons(ntohs(ip4->tot_len) - 20), // __be16 .nexthdr = ip4->protocol, // __u8 .hop_limit = ip4->ttl, // __u8 .saddr = v->local6, // struct in6_addr .daddr = v->pfx96, // struct in6_addr }; ip6.daddr.in6_u.u6_addr32[3] = ip4->daddr; // Calculate the IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6.version == 6 for (int i = 0; i < sizeof(ip6) / sizeof(__u16); ++i) { sum6 += ((__u16*)&ip6)[i]; } // Note that there is no L4 checksum update: we are relying on the checksum neutrality // of the ipv6 address chosen by netd's ClatdController. // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, htons(ETH_P_IPV6), 0)) return TC_ACT_PIPE; // This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet. // // In such a case, skb->csum is a 16-bit one's complement sum of the entire payload, // thus we need to subtract out the ipv4 header's sum, and add in the ipv6 header's sum. // However, we've already verified the ipv4 checksum is correct and thus 0. // Thus we only need to add the ipv6 header's sum. // // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. So we just ignore the return code (see above for more details). bpf_csum_update(skb, sum6); // bpf_skb_change_proto() invalidates all pointers - reload them. data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; // I cannot think of any valid way for this error condition to trigger, however I do // believe the explicit check is required to keep the in kernel ebpf verifier happy. if (data + sizeof(ip6) > data_end) return TC_ACT_SHOT; // Copy over the new ipv6 header without an ethernet header. *(struct ipv6hdr*)data = ip6; // Redirect to non v4-* interface. Tcpdump only sees packet after this redirect. return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); } LICENSE("Apache 2.0"); CRITICAL("Connectivity");